VISION

To be a centre of excellence for development and dissemination of knowledge in Applied Sciences, Technology, Engineering and Management for the Nation and beyond.

MISSION

We are committed to value based Education, Research and Consultancy in Engineering and Management and to bring out technically competent, ethically strong and quality professionals to keep our Nation ahead in the competitive knowledge intensive world.

QUALITY POLICY

We are committed to

- Providing value based quality education for the development of students as competent and responsible citizens.
- Contributing to the nation and beyond through research and development
- Continuously improving our services

DEPARTMENT OF INFORMATION TECHNOLOGY

VISION

To be a centre of excellence for development and dissemination of knowledge in Information Technology for the Nation and beyond.

MISSION

Department of Information Technology is committed to:

- MS1: Transform the students into innovative, competent and high quality IT professionals to meet the growing global challenges.
- MS2: Impart value-based IT education to the students and enrich their knowledge
- MS3: Endeavour for continuous upgradation of technical expertise of students to cater to the needs of the society
- MS4: Achieve an effective interaction with industry for mutual benefits

2014 REGULATIONS

PROGRAM EDUCATIONAL OBJECTIVES (PEOs)

Graduates of Information Technology will

- PEO1: Excel in industry and higher education by applying fundamental knowledge in engineering principles.
- PEO2: Analyze, design and implement Information Technology based solutions to meet the real world problems.
- PEO3: Exhibit Soft skills, Professional and Ethical values and thrust for continuous learning for a successful professional career.

MAPPING OF MISSION STATEMENTS (MS) WITH PEOS

MS\PEO	PEO1	PEO2	PEO3
MS1	3	3	2
MS2	2	2	3
MS3	2	2	3
MS4	3	2	3

1 – Slight, 2 – Moderate, 3 – Substantial

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:

- **PO1** Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
- **PO2 Problem analysis:** Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
- **PO3 Design/development of solutions:** Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
- **PO4 Conduct investigations of complex problems:** Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
- **PO5** Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
- **PO6** The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
- **PO7** Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
- **PO8** Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
- **PO9** Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
- **PO10** Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
- **PO11 Project management and finance:** Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
- **PO12** Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

PROGRAM SPECIFIC OUTCOMES (PSOs)

- **PSO1** Foundations of IT: Comprehend mathematical and computational methodologies to address the problems of various domains.
- **PSO2 Providing IT solutions:** Analyze, design and implement IT enabled solutions to meet industrial needs using appropriate tools and techniques.

		14			1205			11 (12) 1 (005				
PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	

MAPPING OF PEOs WITH POs AND PSOs

PEO1	3	2	-	-	-	-	2	-	-	-	1	2	3	2
PEO2	-	3	3	3	2	-	1	-	-	-	2	2	2	3
PEO3	-	-	-	-	-	3	-	3	3	3	-	3	2	1
	1 – Slight, 2 – Moderate, 3 – Substantial													

CURRICULUM BREAKDOWN STRUCTURE UNDER REGULATION 2014

Curriculum Breakdown Structure(CBS)	Curriculum Content (% of total number of credits of the program)	Total number of contact hours	Total number of credits
Basic Sciences(BS)	18.89	570	34
Engineering Sciences(ES)	7.78	270	14
Humanities and Social Sciences(HS)	9.44	300	17
Program Core(PC)	42.22	1560	76
Program Electives(PE)	10.00	270	18
Open Electives(OE)	5.00	135	9
Project(s)/Internships(PR)	6.67	315	12
	Total		180

PEO\PO

PSO2

B.E. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2014 – 15 onwards)

SEMESTER - I

Course	Course Title	Ho	urs / W	eek	Credit	Max	imum I	Marks	CBS
Code	Course The	L	Т	Р	Cleun	CA	ESE	Total	CDS
	THEORY								
14EGT11	Communicative English I	3	0	0	3	40	60	100	HS
14MAT11	Mathematics I	3	1	0	4	40	60	100	BS
14PHT11	Applied Physics	3	0	0	3	40	60	100	BS
14CYT11	Applied Chemistry	3	0	0	3	40	60	100	BS
14CSC11	Problem Solving and Programming	3	0	3	4	40	60	100	PC
14EET11	Basics of Electrical and Electronics Engineering	0	0	3	3	40	60	100	ES
	PRACTICAL								
14PHL11	Physical Sciences Laboratory I	0	0	3	1	100	0	100	BS
14EEL11	Basics of Electrical and Electronics Engineering	0	0	3	1	100	0	100	ES
	Total		22						

CA – Continuous Assessment, ESE – End Semester Examination

B.E. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2014 – 15 onwards)

SEMESTER – II

Course	Course Title	Ho	urs / W	/eek	Credit	Max	imum N	Aarks	CBS
Code	Course The	L	Т	Р	Creuit	CA	ESE	Total	CDS
	THEORY								
14EGT21	Communicative English II	3	0	0	3	40	60	100	HS
14MAT21	Mathematics II	3	1	0	4	40	60	100	BS
14PHT21	Materials Science	3	0	0	3	40	60	100	BS
14CYT21	Environmental Science	3	0	0	3	40	60	100	BS
14MET11	Basics of Civil and Mechanical Engineering	3	0	0	3	40	60	100	ES
14MEC11	Engineering Drawing	2	0	3	3	40	60	100	ES
	PRACTICAL								
14VEC11	Value Education	0	2	1	1	100	0	100	HS
14PHL21	Physical Sciences Laboratory II	0	0	3	1	100	0	100	BS
14MEL11	Basics of Civil and Mechanical Engineering	0	0	3	1	100	0	100	ES
				Total	22		-		

CA – Continuous Assessment, ESE – End Semester Examination

B.E. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2014 – 15 onwards)

SEMESTER – III

Course	Course Title	Ho	urs / W	'eek	Credit	Max	imum 1	Marks	CBS
Code	Course Thie	L	Т	Р	Creuit	CA	ESE	Total	CDS
	THEORY								
14MAT31	Mathematics- III	3	1	0	4	40	60	100	BS
14ITT31	Data Structures and Algorithms Analysis I	3	0	0	3	40	60	100	PC
14ITT32	Digital Principles and Design	3	1	0	4	40	60	100	PC
14CST32	Object Oriented Programming using C++	3	0	0	3	40	60	100	PC
14CST33	Computer Organization	3	0	0	3	40	60	100	PC
14ECT33	Communication Engineering	3	0	0	3	40	60	100	ES
	PRACTICAL								
14ITL31	Data Structures and Algorithms Analysis	0	0	3	1	100	0	100	PC
14ITL32	Digital Laboratory	0	0	3	1	100	0	100	PC
14CSL32	Object Oriented Programming using C++ Laboratory	0	0	3	1	100	0	100	PC
				Total	23				

CA - Continuous Assessment, ESE - End Semester Examination

B.E. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2014 – 15 onwards)

SEMESTER - IV

Course	Course Title	Ho	urs / W	eek	Credit	Max	imum	Marks	CBS
Code	Course The	L	Т	Р	Creuit	CA	ESE	Total	CDS
	THEORY								
14MAT43	Discrete Mathematics	3	1	0	4	40	60	100	BS
14ITT41	Data Structures and Algorithms Analysis II	3	1	0	4	40	60	100	PC
14ITT42	Java Programming	3	0	0	3	40	60	100	PC
14CST41	Database Management Systems	3	1	0	4	40	60	100	PC
14CST42	Operating Systems	3	0	0	3	40	60	100	PC
14CST44	Software Engineering	3	0	0	3	40	60	100	PC
	PRACTICAL								
14ITL41	Java Programming Laboratory	0	0	3	1	100	0	100	PC
14CSL41	Database Management Systems Laboratory	0	0	3	1	100	0	100	PC
14CSL42	Operating Systems Laboratory	0	0	3	1	100	0	100	PC
				Total	24				

CA - Continuous Assessment, ESE - End Semester Examination

B.E. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2014 – 15 onwards)

SEMESTER – V

Course	Course Title	Ног	ırs / V	Veek	Credit	Max	imum	Marks	CBS
Code	Course mue	L	Т	P	Creuit	CA	ES E	Total	CD3
	THEORY								
14MAT51	Probability and Queuing Theory	3	1	0	4	40	60	100	BS
14ITT51	Computer Communication Networks	3	0	0	3	40	60	100	PC
14ITT52	Web Technology	3	0	0	3	40	60	100	PC
14CST51	Object Oriented System Design	3	0	0	3	40	60	100	PC
14ITT53	Microprocessor and Embedded Systems	3	0	0	3	40	60	100	PC
	Elective-I (Professional)	3	0	0	3	40	60	100	PE
	PRACTICAL								
14CSL51	Case Tools Laboratory	0	0	3	1	100	0	100	PC
14ITL51	Microprocessor and Embedded Systems	0	0	3	1	100	0	100	PC
14ITL52	Web Technology Laboratory	0	0	3	1	100	0	100	PC
		•	,	Total	22				

CA – Continuous Assessment, ESE – End Semester Examination

B.E. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2014 – 15 onwards)

SEMESTER – VI

Course	Course Title	Ho	urs / W	eek	Credit	Max	timum I	Marks	CBS
Code	Course mue	L	Т	Р	Creuit	CA	ESE	Total	CDS
	THEORY								
14GET61	Economics and Management for Engineers	3	0	0	3	40	60	100	HS
14ITT61	Network Programming and Management	3	0	0	3	40	60	100	PC
14CST61	Compiler Design	3	1	0	4	40	60	100	PC
14ITT62	Information Coding Techniques	3	0	0	3	40	60	100	PC
	Elective-II (Professional)	3	0	0	3	40	60	100	PE
	Elective-III (Open)	3	0	0	3	40	60	100	OE
	PRACTICAL								
14ITL61	Network Programming Laboratory	0	0	3	1	100	0	100	PC
14CSL61	Compiler Design Laboratory	0	0	3	1	100	0	100	PC
14EGL41	Communication Skills Laboratory	0	0	3	1	100	0	100	HS
				Total	22				

 $CA-Continuous\ Assessment,\ ESE-End\ Semester\ Examination\ ,$

B.E. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2014 – 15 onwards)

SEMESTER – VII

Course	Course Title	Но	urs / W	eek	Credit	Max	imum	Marks	CBS
Code	Course Thie	L	Т	Р	Creuit	CA	ESE	Total	CDS
	THEORY								
14GET71	Total Quality Management	3	0	0	3	40	60	100	HS
14ITT71	Cryptography and Network Security	3	1	0	4	40	60	100	PC
14CST72	Mobile Communication	3	0	0	3	40	60	100	PC
	Elective – IV (Professional)	3	0	0	3	40	60	100	PE
	Elective – V (Open)	3	0	0	3	40	60	100	OE
	Elective – VI (Open)	3	0	0	3	40	60	100	OE
	PRACTICAL								
14ITL71	Cryptography and Network Security Laboratory	0	0	3	1	100	0	100	PC
14CSL72	Mobile Communication Laboratory	0	0	3	1	100	0	100	PC
14ITP71	Mini project	0	0	6	3	50	50	100	PR
	Total				24				

CA – Continuous Assessment, ESE – End Semester Examination

B.E. DEGREE IN INFORMATION TECHNOLOGY

CURRICULUM

(For the candidates admitted from academic year 2014 – 15 onwards)

SEMESTER – VIII

Course	Course Title	Но	urs / W	/eek	Credit	Max	imum 1	Marks	CBS
Code	Course Thie	L	Т	Р	Creuit	CA	ESE	Total	CDS
	THEORY								
14GET81	Professional Ethics and Human Values	3	0	0	3	40	60	100	HS
	Elective – VII (Professional)	3	0	0	3	40	60	100	PE
	Elective – VIII(Professional)	3	0	0	3	40	60	100	PE
	Elective – IX (Professional)	3	0	0	3	40	60	100	PE
	PRACTICAL								
14ITP81	Project Work	0	0	18	9	100	100	200	PR
		•		Total	21				

CA – Continuous Assessment, ESE – End Semester Examination,

	LIST OF PROFESSIONAL E	LECTIV	ES			
Course	Course Title	H	ours/W	eek	Credit	CDS
Code	Course Title	L	Т	P	Credit	CBS
	SEMESTER V					
14CST52	Theory of Computation	3	1	0	4	PE
14CSE01	Advanced Databases	3	0	0	3	PE
14CSE02	Artificial Intelligence	3	0	0	3	PE
14CSE03	Advanced Java Programming	3	0	0	3	PE
	SEMESTER VI	•			·	
14MAT41	Numerical Methods	3	1	0	4	PE
14ECT42	Signals and Systems	3	1	0	4	PE
14CSC61	Graphics and Multimedia	3	0	2	4	PE
14ITE01	Data Warehousing and Data Mining	3	0	0	3	PE
14ITE02	High Performance Computer Networks	3	0	0	3	PE
14ITE03	XML and Web Services	3	0	0	3	PE
	SEMESTER VII					
14ECT51	Digital Signal Processing	3	1	0	4	PE
14CSE06	Software Testing	3	0	0	3	PE
14CSE07	Social Network Analysis	3	0	0	3	PE
14CSE11	Business Intelligence and its Applications	3	0	0	3	PE
14ITE04	Information Storage Management	3	0	0	3	PE
14ITE05	Information Retrieval Methods	3	0	0	3	PE
14ITE06	Distributed Systems	3	0	0	3	PE
	SEMESTER VIII					
14ECE08	Digital Image Processing	3	0	0	3	PE
14CSE14	Big Data Analytics	3	0	0	3	PE
14CSE15	Semantic Web	3	0	0	3	PE
14CSE16	Software Project Management	3	0	0	3	PE
14CSE17	Software Quality Assurance	3	0	0	3	PE
14GEE81	Entrepreneurship Development	3	0	0	3	PE
14ITE07	Wireless Communication and Networks	3	0	0	3	PE
14ITE08	Cloud Computing	3	0	0	3	PE
14ITE09	Service Oriented Architecture	3	0	0	3	PE
14ITE10	Cyber Forensics	3	0	0	3	PE
14ITE11	Human Computer Interaction	3	0	0	3	PE
14ITE12	Building Enterprise Applications	3	0	0	3	PE

	LIST OF OPEN ELECTIV	/ES				
Course	Correce Title	H	ours/W	eek	Credit	CBS
Code	Course Title	L	Т	Р	Credit	CBS
	SEMESTER VI					
14ITO01	Internet of Things	3	0	0	3	OE
14ITO02	Platform Technologies	3	0	0	3	OE
14ITO07	Machine Learning Techniques	3	0	0	3	OE
	SEMESTER VII					
14ITO03	Python Programming	3	0	0	3	OE
14ITO04	Mobile Application Development	3	0	0	3	OE
14ITO05	Evolutionary Algorithms	3	0	0	3	OE
14ITO06	Free Open Source Software	3	0	0	3	OE

14EGT11 COMMUNICATIVE ENGLISH I

(Common to all Engineering and Technology branches)

UNIT – I

Functional Grammar: Basics of Vocabulary - Parts of speech or Word Classes including Determiners - Prefixes and Suffixes - Homonyms and Homophones - Connectives - Compound Nouns. Listening: Introduction to Listening / Types of Listening - Extensive / Intensive Listening - Listening Activities. Speaking: Verbal and non verbal communication -An introduction to speech sounds, syllables & word stress – Speaking Activities. **Reading:** Introduction to Skimming and scanning as reading techniques - understanding discourse coherence - sequencing of sentences - Reading activities. Writing: Introduction to aspects of technical writing – writing definitions and descriptions- Letter Writing – Informal letters-Punctuation in Letter Writing

UNIT – II

Functional Grammar: Concord - Tenses - Voice - Use of Articles and prepositions. Listening: Listening Comprehension - Cloze Test - Extensive listening - listening for general information. Speaking: Role Play - Situational Conversations. Reading: Reading newspaper articles - global understanding skills and ability to infer, extract gist and understand main ideas. Writing: Letter Writing - Formal letters, Writing a Profile about an organization-Punctuation (General).

ÙNIT – ÎII

Functional Grammar: Phrasal verbs - Clauses - Simple, Compound and Complex Sentences - Synonyms and Antonyms. Listening: Listening Comprehension - Cloze Text - Intensive listening - listening for specific information. Speaking: Describing Places, People, Technical Processes. Reading: Reading different types of texts - Understanding general and specific information. Writing: Paragraph Writing – Writing reviews on short films and videos - Offering suggestions and recommendations Q

UNIT – IV

Functional Grammar: Conditional clauses (If clause) - Adjectives, Compound Adjectives and Degrees of Comparison. Listening: Listening to different accents, listening to speeches / presentations. Speaking: Describing Technical Processes and Machines and Gadgets - Telephone Skills. Reading: Reading Texts with focus on use of verbs and verb phrases. Writing: Writing e-mails -- Transcoding - Using Charts, pictures and tables for interpretations. 9 UNIT – V

Functional Grammar: Modals – Types of Sentences – Idioms and Phrases and proverbs - identifying odd words. Listening: Retrieval of factual information – listening to identify topic, context, function, speaker's opinion, attitude, etc. Speaking: Interviews - Personal and Telephonic - Giving impromptu talks, making presentations on given topics. Reading: Reading for structure and detail – finding key information in a given text and finding topic sentences. Writing: Designing and Making Posters - Writing Advertisements-Free writing on any given topic (Technical and topics on current affairs)

TEXT BOOKS :

"Learn English – A Fun Book of Functional Language, Grammar and Vocabulary", McGraw Hill Education [India] 1. Pvt. Ltd., Santanu Sinha Chaudhuri, 2013.

REFERENCE BOOKS:

- Raman, Meenakshi and Sangeetha Sharma, "Technical Communication: Principles and Practice", 1. Oxford University Press, New Delhi, 2011.
- Regional Institute of English, "English for Engineers", Cambridge University Press, New Delhi, 2006. 2.
- Rizvi, Ashraf M., "Effective Technical Communication", Tata McGrawHill, New Delhi. 2009. 3.

COURSE OUTCOMES

On completion of the course the students will be able to

- speak clearly, confidently, comprehensibly, and communicate with others using appropriate communicative CO1: strategies
- write cohesively and coherently and flawlessly avoiding grammatical errors, using a wide range of CO2: vocabulary, organizing their ideas logically on a topic
- read different genres of texts adopting various reading strategies CO3:
- CO4: listen/view and comprehend different spoken discourses / excerpts in different accents
- CO5: use language effectively and accurately acquiring vocabulary from real-life context

					11 6	,								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						1			2	3		2		
CO2						1			1	3		1		
CO3						1			1	3		2		
CO4						1			2	3		2		
CO5						2			2	3		2		

Mapping of COs with POs and PSOs

1 -Slight, 2 -Moderate, 3 -Substantial

TOTAL : 45

3

0

0

3

Functions of Several Variables: Functions of two variables – Partial derivatives – Total differential – Taylor's Series expansion –Maxima and Minima – Constrained maxima and minima – Lagrange's multiplier method – Jacobians – Properties.

UNIT – III

Ordinary Differential Equations of First Order: Solutions of equations in separable form – Exact differential equations – Integrating factors – Linear first order differential equations – Bernoulli's equation – Clairaut's equation.

UNIT – IV

Ordinary Differential Equations of Higher Order: Linear differential equations of second and higher order with constant coefficients – Particular Integrals for the types: $e^{ax} - \cos(ax) / \sin(ax) - x^n - e^{ax}x^n$, $e^{ax}\sin(bx)$ and $e^{ax}\cos(bx) - x^n\sin(ax)$ and $x^n\cos(ax) - \text{Linear differential equations with variable coefficients: Euler-Cauchy's equation – Legendre's equation.$

$\mathbf{UNIT} - \mathbf{V}$

Applications of Ordinary Differential Equations: Method of variation of parameters – Simultaneous first order linear equations with constant coefficients – Simple harmonic motion – Deflection of beams – Electric circuits (Differential equations and associated conditions need to be given).

TEXT BOOKS:

- 1. Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics For First Year B.E/B.Tech", Reprint Edition 2014, S.Chand and Co., New Delhi.
- 2. Veerarajan T., "Engineering Mathematics, (for first year)", Reprint Edition 2013, Tata McGraw-Hill, New Delhi. **REFERENCE BOOKS:**
- 1. Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publications, New Delhi, 2011.
- 2. Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", 4th Edition, Narosa Publishing House, New Delhi, Reprint 2014.
- 3. Bali N.P. and Manish Goyal, "Text Book of Engineering Mathematics", 8th Edition, Laxmi Publications, New Delhi, 2011.
- 4. Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2011.
- 5. Kreyszig E., "Advanced Engineering Mathematics", 10th Edition, John Wiley Sons, 2010.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Solve engineering problems which needs matrix computations.
- CO2: Solve extremal problems which arise in function of several variables.
- CO3: Identify the appropriate method for solving first order ordinary differential equations.
- CO4: Classify and find the solution of ordinary differential equations of higher order.
- CO5: Apply the concept of ordinary differential equations for modeling and finding solutions to engineering problems.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1								1		
CO2	3											1		
CO3	3	3	1	1								1		
CO4	3	3	1	1								1		
CO5	3	3	2	1								1		

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

14MAT11 MATHEMATICS I

(Common to all Engineering and Technology branches)

Pre-requisites: Basics concepts of matrices, Basic idea of differentiation, Knowledge of differential equations **UNIT – I**

Matrices: Eigenvalues and Eigenvectors of a real matrix – Properties of Eigenvalues and Eigenvectors (without proof) – Cayley-Hamilton Theorem (Statement and Applications) - Similarity transformation (concept only) – Orthogonal matrices – Orthogonal transformation of a symmetric matrix to diagonal form – Quadratic form – Nature of quadratic forms – Reduction of a quadratic form to canonical form by orthogonal transformation.

UNIT – II

15/106

9

Lecture: 45, Tutorial: 15, TOTAL: 60

9

9

g

Q

3

1 0 4

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

14PHT11 APPLIED PHYSICS

(Common to all Engineering and Technology branches)

3

Û

0

3

UNIT – I

Properties of Matter: Elasticity - Hooke's law - Modulus of elasticity (qualitative) - Stress-strain diagram - Poisson's ratio - Bending moment - Depression of a cantilever (theory) - Derivation of Young's modulus of the material of the beam - Uniform and non-uniform bending - I-shaped girders. Thermal Physics: Modes of heat transfer - Thermal conductivity - Derivation of rectilinear flow of heat along a bar - Radial and cylindrical heat flow - Conduction through compound media (series and parallel).

UNIT – II

Acoustics: Classification of sound – Weber–Fechner law – Sabine's formula- derivation using growth and decay method – Absorption coefficient and its determination -Factors affecting acoustics of buildings and their remedies. Ultrasonics: Production - Magnetostrictive generator - Piezoelectric generator - Determination of velocity using acoustic grating -Cavitation – Industrial applications – Drilling, welding, soldering and cleaning – Non destructive testing – Ultrasonic pulse echo system.

UNIT – III

Laser and Applications: Spontaneous emission and stimulated emission – Population inversion – Pumping methods – Derivation of Einstein's coefficients (A&B) – Types of lasers – Nd:YAG laser, CO₂ laser, Semiconductor lasers: homojunction and heterojunction – Laser Applications – Industrial applications: laser welding, laser cutting, laser drilling - Holography - Construction and reconstruction of images.

UNIT - IV

Fiber Optics and Applications: Principle and propagation of light through optical fibers – Derivation of numerical aperture and acceptance angle - Classification of optical fibers (based on refractive index, modes and materials) -Crucible-crucible technique for fiber fabrication - Sources (LED and LASER) and detectors (p-i-n photodiode and avalanche photodiode) for fiber optics - Fiber optical communication links - Losses in optical fibers - Fiber optic sensors - Temperature and displacement sensors.

UNIT - V

Quantum Physics and Applications: Black body radiation - Planck's theory (derivation) - Compton effect (theory) -Matter waves - Uncertainty principle (qualitative) - Schroedinger's wave equations - Time independent and time dependent wave equations - Physical significance of wave function - Particle in a box (One dimensional) - Electron microscopes - Scanning electron microscope - Transmission electron microscope.

TEXT BOOKS:

Tamilarasan K and Prabu K, "Engineering Physics-I", Tata McGraw Hill Education Private Limited, New Delhi, 1. 2014.

REFERENCE BOOKS:

- Gaur R.K. and Gupta S.L., "Engineering Physics", Dhanpat Rai and Sons, New Delhi, 2009. 1.
- Uma Mukherji, "Engineering Physics", Narosa Publishing House, New Delhi, 2011. 2
- Laud B.B., "Lasers and non-linear optics", New Age International (p) Limited Publishers, New Delhi, 1996. 3.
- Ajoy Ghatak and Thyagarajan K., "Introduction to Fiber Optics", Cambridge University Press, New York, USA, 4. 2000
- Mehta and Neeraj, "Applied Physics for Engineers", Prentice-Hall of India Private Limited, New Delhi, 2011. 5.
- Douglas Brandt and Douglas C. Giancoli, "Physics for Scientists and Engineers", Prentice-Hall of India Private 6. Limited, New Delhi, 2000.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Infer the extensive properties of matter and heat conduction in metal.
- CO2: Demonstrate acoustically good buildings and non-destructive testing using ultrasonic waves.
- Employ the laser in engineering and technology. CO3:
- Sketch the principle of fiber optics and fiber optic communication link. CO4:
- Interpret the concepts of quantum physics to optical phenomena and electrons in a metal. CO5:

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			2	2		2		1					
CO2	3			2	2		2		1					
CO3	3			2	2		2		1					
CO4	3			2	2		2		1					
CO5	3			2	2		2		1					

1 – Slight, 2 – Moderate, 3 – Substantial

9

9

9

9

9

TOTAL: 45

14CYT11 APPLIED CHEMISTRY

(Common to all Engineering and Technology branches)

3

0

3

Q

UNIT – I

Water: Introduction - Sources of water - Impurities in water - Types of water - Water quality standards - Water quality parameters (Brief discussion only) - Hardness of water- Expression of hardness - Units of hardness -Estimation of Hardness of water by EDTA method - Determination of alkalinity - Disadvantages of using hard water - Boiler troubles due to hard water - scale and sludge formation - boiler corrosion - caustic embrittlement- priming and foaming- Softening of water- External treatment methods zeolite and demineralization process (principle, process, advantages and disadvantages only) - Internal treatment process - colloidal, carbonate, calgon and phosphate conditioning (brief discussion only) - desalination by reverse osmosis method UNIT – II 0

Electrochemistry: Introduction - Electrolytic and Electrochemical Cells - Representation of a galvanic cell - Reversible and Irreversible cells - EMF and its determinations - Electrode potential - Nernst Equation - Reference electrodes (hydrogen and calomel electrodes) - Electrochemical series and its applications - Conductometric titrations (strong acid vs strong base only) -Batteries (Lead Acid battery, NICAD, Lithium battery, Lithium Sulphur battery) - Proton exchange membrane cells. Q

UNIT – III

Corrosion and Its Control: Introduction - Mechanism of chemical and electrochemical corrosion - galvanic corrosion concentration cell corrosion - Galvanic series - Factors influencing rate of corrosion - corrosion control methods - Sacrificial anode and impressed current cathodic protection methods - Corrosion inhibitors - Protective coatings - classifications - Pretreatment of metal surface - Metallic coating -electroplating and electrolessplating (General discussion) - Hot dipping (Tinning and galvanising) - Non-metallic coating - surface conversion coating (phosphate coating and anodized coating) - Organic coating - paints constituents and their function - Special paints (Fire retardant, temperature indicating, water repellant and luminescent paints) UNIT – IV 0

Fuels: Coal and its varieties - proximate and ultimate analysis - their significance - metallurgical coke - Otto-Hoffman byproduct method - Liquid fuel - refining of petroleum - Manufacture of synthetic petrol - Cracking - Polymerization - Hydrogenation of coal (Fisher Tropsch and Bergius methods) - knocking - octane number - improving octane number by additives - Diesel - cetane number - Gaseous fuels (Water gas and LPG).

Combustion: Introduction - Calorific Values - Gross and Net Calorific Values - Dulong's formula (simple problems)- Flue gas analysis by Orsat's method - Explosive range and Spontaneous Ignition Temperature

UNIT - V

Polymers: Introduction – Nomenclature of polymers – functionality – polymerization - types – addition, condensation and copolymerization with examples - Effect of polymer structure on properties (strength, plastic deformation, glass transition temperature and melting point of polymers (Tg and Tm), crystallinity and chemical resistance) - plastics - types (thermo and thermosetting plastics) - individual polymers - Polyethylene, Polypropylene, PVC, Teflon and Bakelite (preparation, properties and uses only) -Compounding of plastics- Fabrication of plastics (compression, injection and extrusion moulding methods) - conducting polymers

TEXT BOOKS:

- Palanisamy P.N, Geetha A, Manjula Rani K, "Applied Chemistry", 2nd Edition, Tata McGraw Hill Education Private Limited, 1. New Delhi, 2013.
- Jain P C and Monica Jain, "Engineering Chemistry", 15th Edition, Dhanpat Rai Publication Co., 2.

New Delhi, 2008.

REFERENCE BOOKS:

- Sharma B.K., "Engineering Chemistry", Krishna Prakasan Media (P) Ltd., Meerut, 2001. Sivasankar B., "Engineering Chemistry", Tata McGraw-Hill, New Delhi, 2008. 1.
- 2.
- Krishnamurthy N., "Engineering Chemistry", 2nd Edition, PHI Learning Private Limited, New Delhi, 2008. 3.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Get the basic knowledge of water quality parameters and treatment methods
- CO2: Obtain the principles of electrochemical cells, EMF series and energy storing devices
- Acquire the knowledge of the types and prevention methods of corrosion CO3:
- Know the concepts and developments in combustion and various types of fuels. CO4:
- Understand the knowledge about the types of polymers, plastics and moulding methods CO5:

Mapping of Course Outcomes (COs) with Program Outcomes (POs)

	Mapping of Course Outcomes (COS) with Frogram Outcomes (FOS)													
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		2	2		2	3	3	1	1			
CO2	3	2		2	2		2	3	3	1	1			
CO3	3	2		2	2		2	3	3	1	1			
CO4	3	2		2	2		2	3	3	1	1			
CO5	3	2		2	2		2	3	3	1	1			

1 – Slight, 2 – Moderate, 3 – Substantial

9

TOTAL : 45

1 – Slight, 2 – Moderate, 3 – Substantial

3 0

UNIT – I

Introduction to Computer and Problem Solving: Overview of computers - Applications of computers-Characteristics of computer - Basic computer Organization - Number System - Problem solving: Planning the computer program -Algorithms - Flowcharts - Pseudo codes - Structuring the logic - Top-Down design. 9 UNIT – II

14CSC11 PROBLEM SOLVING AND PROGRAMMING

Case Study on Problem Solving: Algorithm, Flowchart and Pseudo code for the problems: Exchanging the values of two variables - Finding the biggest number - Counting - Summation of numbers - Factorial computation - Generation of Fibonacci Sequence - Summation of series - Base Conversion - Reversing the digits of an Integer. UNIT – III 9

Introduction to C and Control Statements: Overview of C – Basic structure of a C Program – Executing a C Program – C Character set - Tokens - Keywords and Identifiers - Constants - Variables - Data types - Storage classes - Managing Input and Output operations - Operators and Expressions - Decision making and Branching - Looping - break and continue statements.

UNIT – IV

Arrays, Strings and Functions: Arrays - One dimensional and Two dimensional arrays - Handling of character strings: Declaring and initializing string variables - String handling functions - Library functions - User defined functions: Elements of User defined Functions - nesting of functions - passing arrays to function - passing strings to functions recursion. 9

UNIT – V

Structures, Unions and Pointers: Structure definition – Structure declaration – Accessing a structure member- Structure initialization - Array of Structures - Arrays within structures - Structures within Structures - Structures and Functions, Unions. Understanding pointers - Accessing address of a variable - Declaring pointer variables - Initialization of pointer variables - accessing a variable through its pointer - Pass by value vs. Pass by pointers.

REFERENCE BOOKS:

- Dromey R.G., "How to Solve it by Computer", Pearson Education, 2009. 1.
- Balagurusamy E., "Fundamentals of Computing and Programming", Tata McGraw-Hill Education Pvt. Ltd, 2010. 2.
- Stephen G. Kochan, "Programming in C", 3rd Edition, Pearson Education, 2005. 3.
- Yashavant P. Kanetkar, "Let Us C", BPB Publications, 2011. 4

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: apply fundamental principles of problem solving techniques
- CO2: develop algorithm, flowchart and pseudo code to provide solutions to problems
- CO3: develop programs using basic programming principles of C language
- CO4: implement modular programming concepts using functions
- design simple applications using arrays, structures and pointers CO5:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3		2							2		
CO2	3	3	1		2							2		
CO3	3	3	2	1	2							2		
CO4	3	3	3	2								2		
CO5	3	3	3	2	2							2		
4 011 1	2 14	1	0 0 1											

Mapping of COs with POs and PSOs

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

3 4

9

9

Lecture: 45, Practical: 45, TOTAL: 90

14EET11 BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING

(Common to all Engineering and Technology branches)

UNIT-I

Introduction to Power Systems: Introduction: Electric Potential, Current, Power and Energy. Generation of Electrical Energy: Sources of Energy - Renewable and Non Renewable - Power Generation: Thermal, Hydro and Nuclear Power plants - Solar and Wind (schematic arrangement and operation) Power plants - Structure of Electric Power System - Transmission and Distribution Voltages. Electrical Safety Aspects - Phase-Neutral - Earthing: Need for Earthing and Types - Domestic Wiring (Simple and staircase) - Energy Conservation and Sustainability.

UNIT - II

DC Circuits and AC Circuits: Resistance: Resistors in Series and Parallel - Network Reduction - Voltage and Current Division Rule - Ohm's Law- Kirchhoff's Laws - Mesh Analysis of Simple Resistive Networks.

Single phase systems: Alternating (Sinusoidal) Voltage and Current, R.M.S and Average Value, Power Factor, Form Factor and Peak Factor - AC Series Circuits (RL, RC & RLC). Three phase Systems (Qualitative only): Star and Delta Connected Systems -Line and Phase Voltage/Current - Three Phase Power Measurement by Two Wattmeter Method. 9

UNIT - III

Electrical Machines: DC Machines: Construction, Principle of Operation of DC Motor-Torque Equation, Types and Applications. AC Machines: Construction and Working Principle of AC Generator, Single Phase Transformer, Three Phase Induction Motor and Single Phase Induction Motor (Split Phase and Capacitor Start Induction Motor) - Applications.

UNIT - IV

Basic Electronics: PN Junction Diode - Operation of Rectifiers (Half wave, Full wave - Bridge Rectifiers with waveforms) and Filters - Zener Diodes - Zener Diode as Voltage Regulator - IC Voltage Regulators (78XX & 79XX) - Transistors: Types -Operation of NPN Transistor - Transistor as an Amplifier - Operation and Characteristics of SCR - UPS and SMPS (Block Diagram approach). 9

UNIT - V

Digital Electronics: Introduction - Binary Number Systems and Conversions - Binary Addition and Subtraction - Logic Gates and Truth tables - Boolean Algebra - Basic Laws and Demorgan's theorem - Simplification of Boolean Functions - Full Adder and Full Subtractor - Flip Flops - Counters: Asynchronous Binary Ripple Counter .

TEXT BOOKS:

- Prasad P.V., Sivanagaraju S. and Prasad R., "Basics of Electrical and Electronics Engineering", 1st Edition, Cengage 1. Learning, 2013.
- Muthusubramanian R. and Salivahanan S., "Basics of Electrical and Electronics Engineering", 1st Edition, Tata McGraw 2. Hill, 2009.

REFERENCE BOOKS:

- Jegathesan V., Vinoth Kumar K. and Saravanakumar R., "Basic Electrical and Electronics Engineering", 1st Edition, Wiley 1. India, 2011.
- Sukhija M.S. and Nagsarkar T.K., "Basics of Electrical and Electronics Engineering", 1st Edition ,Oxford University 2. Press, 2012.
- Smarajit Ghosh, "Fundamentals of Electrical and Electronics Engineering", 2nd Edition, PHI Learning, 2007. 3.
- Edward Hughes, Ian McKenzie Smith, Dr. John Hiley and Keith Brown, "Electrical and Electronics Technology", 8th 4. Edition, Pearson Education, 2012.

COURSE OUTCOMES

On completion of the course the students will be able to

- develop a basic understanding of the concept of electrical systems CO1:
- CO2: analyze the DC and AC circuits
- CO3: interpret the construction and working of different types of electric machines
- CO4: discuss the basic electronic components
- CO5: distinguish analog and digital electronics

Mapping of COs with POs and PSOs

					mapping				205					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3									1		
CO2	3	3	3									1		
CO3	3	3	3									1		
CO4	3	3	3									1		
CO5	3	3	3									1		

1 – Slight, 2 – Moderate, 3 – Substantial

9

3

9

0

3

0

Q

TOTAL: 45

14PHL11 PHYSICAL SCIENCES LABORATORY I

(Common to all Engineering and Technology branches)

PART-A: APPLIED PHYSICS LABORATORY (Any five experiments)

LIST OF EXPERIMENTS:

- 1. Determination of Young's modulus of a given material using uniform bending.
- 2. Determination of thermal conductivity of bad conductor using Lee's disc arrangement.
- 3. Determination of velocity of ultrasonic waves in liquid and compressibility of liquid using ultrasonic interferometer.
- 4. (a) Particle size determination using diode laser.
- (b) Determination of wavelength of laser
- 5. Determination of specific resistance of a given coil of wire using Carey Foster bridge.
- 6. Determination of wavelength of Hg spectrum using spectrometer and grating.

Demonstration

- 1. Measurement of efficiency of a solar cell
- 2. Non destructive testing
- 3. Tyndall effect

PART-B: APPLIED CHEMISTRY LABORATORY (Any five experiments)

LIST OF EXPERIMENTS:

- 1. Estimation of Total, Temporary and Permanent hardness of water by EDTA method.
- 2. Estimation of Ca^{2+} and Mg^{2+} hardness separately by EDTA method.
- 3. Estimation of Alkalinity of the given water sample.
- 4. Conductometric titration Mixture of acids.
- 5. Estimation of Hydrochloric acid using pH meter.
- 6. Estimation of Ferrous ion by potentiometric titration.

Demonstration

- 1. Distillation system
- 2. RO water treatment system
- 3. UV Spectrophotometer

REFERENCES / MANUALS / SOFTWARE:

- 1. Physics Laboratory Manual –Dr.K.Tamilarasan and Dr.K.Prabu
- 2. Chemistry Laboratory Manual- Dr.P.N.Palanisamy, P.Manikandan, A.Geetha and K.Manjularani

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Describe the basics of modulus of elasticity, thermal conductivity, ultrasonics and compressibility of water, laser parameters, specific resistance of electrical conductors, and interference and diffraction of light waves.
- CO2: Operate thebasic measuring devices, travelling microscope, Lee's disc arrangement, ultrasonic interferometer, Carrey Foster bridge and spectrometer, and to measure the related physical parameters.
- CO3: Analyze the hardness, amount of Ca^{2+} and Mg^{2+} ions, and presence of alkalinity in water.
- CO4: Employ the instruments like pH meter, conductivity meter and potentiometer for the estimation of unknown concentration of acids and ferrous ion.

Mapping of Course Outcomes (COs) with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3		2	1		2		2				
CO2	3	3		2	1		2		2				
CO3	3	3		2	1		2		2				
CO4	3	3		2	1		2		2				

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL : 45

0 3 1

14EEL11 BASICS OF ELECTRICAL AND ELECTRONICS ENGINEERING LABORATORY

(Common to all Engineering and Technology branches)

LIST OF EXPERIMENTS:

- 1. Control of incandescent and fluorescent lamp by simple and stair-case wiring
- 2. Resistor color coding and verification of Ohm's Law and Kirchhoff's Laws
- 3. Measurement of real power, reactive power, power factor and impedance of RC, RL and RLC circuits.
- 4. Measurement of Earth's resistance
- 5. Load test on DC shunt motor
- 6. Performance characteristics of single phase Transformer
- 7. Load test on single phase induction motor.
- 8. Verification of basic logic gates and their truth tables.
- 9. Implementation of Half wave and Full wave Rectifier with simple Capacitor Filter
- 10. Study of Mixie, Ceiling Fan and Vacuum Cleaner

REFERENCES / MANUALS / SOFTWARE:

Lab Manuals

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: create a basic electrical connections for domestic applications
- CO2: test basic electrical machines like transformer and DC motors
- CO3: construct and analyze basic electronic circuits
- CO4: measure the various electrical parameters of the circuit
- CO5: explain the working of various domestic appliances

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3									2		
CO2	3	3	3									2		
CO3	3	3	3						2			2		
CO4	3	3	3									2		
CO5	3	3	3					1				2		

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL:45

1

3

0

14EGT21 COMMUNICATIVE ENGLISH II

(Common to all Engineering and Technology branches)

UNIT – I

Functional Grammar: Sentences – Affirmative / Negative – Asking questions in the simple present – Using reference words - Cause and Effect expressions. Listening: Listening practice - listening to different types of conversation and answering questions - listening to Audio texts and completing cloze exercises. Speaking: Opening a conversation and getting acquainted with people. Reading: Reading excerpts from a novel, itinerary, magazine and news paper articles. Writing: Formal Letter writing - Job Application Letter - CV and Resume - Writing Instructions 9

UNIT - II

Functional Grammar: Sentences - Interrogative & WH questions - SI units - Numerical Adjectives

Listening: Listening to situation based dialogues - listening to short and long conversations in different domains of activity. Speaking : Conversation practice in real life situations, describing places, narration, introducing ideas. Reading: Reading historic writing - biographical writing - Non fictional book extracts and news feeds. Writing: Filling Forms -Academic Writing - Basics of Business Writing - Calling for Quotation, Placing Orders, Letter of Complaint UNIT – III 9

Functional Grammar: Sentences - Imperative - Gerunds & Infinitives - Commonly confused words. Listening: Understanding the structure of conversations - Listening to academic lectures and live speech - advertisements and announcements. Speaking: Giving and Justifying opinions - apologizing - extempore. Reading: Reading Blogs -Website articles – e-mails. Writing: e-mails – Tweets – Texting and SMS language 0

UNIT - IV

Functional Grammar: Transformation of Sentences - Simple, Compound and Complex - Vocabulary (single word substitute) - conjunctions - reporting verbs - Direct and Indirect speech. Listening: Listening to a telephone conversation, viewing of model interviews (face-to-face, telephonic and video conferencing). Speaking: Giving instructions - Role play - Interviews. Reading: Reading job advertisements and profile of the company concerned Writing: Writing Reports - Preparing a Check list

UNIT – V

Grammar: Analyzing sentence structures in a given short passage - Identifying parts of speech in a given short passage. Listening: Viewing a model group discussion and reviewing the performance of each participant – identifying the characteristics of a good listener - casual conversation. Speaking: Group discussion skills - initiating, turn taking and concluding the discussion. Reading: Making notes from long passages or any form of written materials - providing a suitable title - identifying main points, supporting points. Writing: Email writing - Effective use of email.

TEXT BOOKS :

Dr. Elango et al. "Resonance: English for Engineers and Technologists", Foundation, Chennai, 2013. 1.

REFERENCE BOOKS:

- Anderson, Paul V., "Technical Communication : A Reader-Centered Approach", Cengage. 1.
- 2. Muralikrishna and Sunita Mishra, "Communication Skills for Engineers", Pearson, New Delhi, 2011.
- 3. Sharma, Sangeetha and Binod Mishra, "Communication Skills for Engineers and Scientists", PHI Learning, New Delhi, 2009.

COURSE OUTCOMES

On completion of the course the students will be able to

- speak effectively, express their opinions clearly, initiate and sustain a discussion and also negotiate using CO1: appropriate communicative strategies
- write effectively and persuasively and produce different types of writing such as narration, description, CO2: exposition and argument as well as creative, critical, analytical and evaluative writing
- read different genres of texts, infer implied meanings and critically analyze and evaluate them for ideas as CO3: well as for method of presentation
- CO4: listen and comprehend different spoken excerpts critically and infer unspoken and implied meanings
- use functional grammar for improving employment oriented skills CO5:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2			2	3		2		
CO2						1			1	3		1		
CO3						2			1	3		2		
CO4						1			2	3		2		
CO5						1			1	3		1		
1 _ Slight	2 - Mo	derate	3 - Sub	stantial										

Manning of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL: 45

3 9

3

A

14MAT21 MATHEMATICS II

(Common to all Engineering and Technology branches)

Pre-requisites: Basic ideas of integration, Basic ideas of vectors and complex numbers UNIT – I

Multiple Integrals: Double integration in Cartesian coordinates - Change of order of integration - Area between two curves - Triple integration in Cartesian coordinates - Volume as Triple integrals (Simple problems only). 9

UNIT – II

Vector Calculus: Gradient of a scalar point function – Directional derivative – Divergence of a vector point function – Curl of a vector - Irrotational and Solenoidal vectors - Line Integral, Surface integral and Volume integral (Concept only) - Green's, Stoke's and Gauss divergence theorems (Statement only) - Verification of the above theorems and evaluation of integrals using them (Simple problems only). 9

UNIT - III

Analytic Functions: Functions of a complex variable – Analytic functions – Necessary conditions and Sufficient conditions (excluding proofs) - Cauchy- Riemann equations (Statement only) - Properties of analytic function (Statement only) – Harmonic functions – Construction of Analytic functions – Conformal mapping: w = z + a, az, 1/z – Bilinear transformation.

UNIT - IV

Complex Integration: Cauchy's theorem and Cauchy's integral formula (Statement and applications) - Taylor's and Laurent series - Singularities - Classification - Cauchy's Residue theorem (Statement only) - Contour integration circular and semi-circular contours (excluding poles on real axis).

UNIT – V

Laplace Transform: Conditions for existence - Transform of elementary functions - Basic properties - Derivatives and integrals of transforms – Transforms of derivatives and integrals – Initial and final value theorems – Transform of unit step function - Transform of periodic functions - Inverse Laplace transform of elementary functions - Partial fraction method -Convolution theorem (Statement only) – Solution of linear ODE of second order with constant coefficients.

Lecture: 45, Tutorial: 15, TOTAL: 60

TEXT BOOKS:

- 1. Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics For First Year B.E/B.Tech", Reprint Edition 2014, S.Chand and Co., New Delhi.
- Veerarajan T., "Engineering Mathematics", (for first year), Reprint Edition 2013, Tata McGraw-Hill, New Delhi. 2.

REFERENCE BOOKS:

- Grewal B.S., "Higher Engineering Mathematics", 42nd Edition, Khanna Publications, New Delhi, 2011. 1.
- Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", 4th Edition, Narosa Publishing House, New 2. Delhi, Reprint 2014.
- Bali N.P. and Manish Goyal, "Text Book of Engineering Mathematics", 8th Edition, Laxmi Publications, New Delhi, 3. 2011.
- Ramana B.V., "Higher Engineering Mathematics", Tata McGraw Hill Publishing Company, New Delhi, 2011. 4.
- Kreyszig E., "Advanced Engineering Mathematics", 10th Edition, John Wiley Sons, 2010. 5.

COURSE OUTCOMES

CO5:

On completion of the course the students will be able to

- CO1: Solve problems involving double and triple integrals.
- CO2: Apply the concept of vectors in engineering problems.
- CO3: Have a clear idea about functions of complex variables and analytic function which are widely used in study of fluid and heat flow problems.
- Evaluate complex integrals which is extensively applied in engineering. CO4:
 - Handle Laplace transforms to solve practical problems.

Mapping of COs with POs and PSOs

					F F6	,		• • •••••						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1								1		
CO2	3	3	1	1								1		
CO3	3	3										1		
CO4	3	3	1	1								1		
CO5	3	3	1	1								1		
1 011 1	2 14	1 .	0 0 1											

1 – Slight, 2 – Moderate, 3 – Substantial

3 1 0 4

14PHT21 MATERIALS SCIENCE

(Common to all Engineering and Technology branches)

UNIT – I

Crystal Physics: Crystalline and amorphous solids – Lattice – Unit cell – Crystal systems – Bravais lattice – Lattice planes – Miller indices – Derivation of '*d*' spacing in cubic lattice – Atomic radius – Coordination number– Packing factor for SC, BCC, FCC and HCP structures – Crystal imperfections: Point and line imperfections.

UNIT – II

Conducting Materials: Conductors – Classical free electron theory of metals – Electrical and thermal conductivities – Wiedemann–Franz law – Lorentz number – Draw backs of classical theory – Quantum theory – Fermi distribution function – Effect of temperature on Fermi function – Density of energy states – Carrier concentration in metals.

UNIT – III

Semiconducting Materials: Intrinsic semiconductor – Carrier concentration derivation – Electrical conductivity and band gap (theory) – Extrinsic semiconductors – Carrier concentration derivation in n-type and p-type semiconductors – Hall effect – Determination of Hall coefficient – Applications –Solar cell – LDR.

UNIT – IV

Magnetic and Superconducting Materials: Magnetic materials - Types of magnetic materials (qualitative) – Domain theory – Hysteresis – Soft and hard magnetic materials – Applications - Transformer core – Magneto optical recording – Superconductors – Properties – Types of superconductors – BCS theory of superconductivity (qualitative) – Josephson effect - Applications of superconductors – SQUID – Cryotron – Magnetic levitation. **Dielectric Materials:** Dielectric constant – Qualitative study of polarization – Frequency and temperature dependence of polarization – Dielectric loss – Dielectric breakdown – Uses of dielectric materials (capacitor) – Ferro electric materials (qualitative).

UNIT – V

Smart Materials: Metallic glasses: Preparation (Melt spinning method only), properties and applications – Shape memory alloys (SMA): Characteristics and applications. **Nano Materials:** Low dimensional structures (quantum dot, wire and well) – Features of nano materials – Synthesis: top down and bottom up approaches – Ball milling and lithographic methods – Physical and chemical vapor phase depositions – Sol gel method – Carbon nanotubes: Structures – Properties – Fabrication by laser ablation – Applications.

TEXT BOOKS:

1. Tamilarasan K. and Prabu K., "Engineering Physics-II", Tata McGraw Hill Education Private Limited, New Delhi, 2014.

REFERENCE BOOKS:

- 1. Mehta and Neeraj, "Applied Physics for Engineers", Prentice-Hall of India Private Limited, New Delhi, 2011.
- 2. Raghavan V., "Materials Science and Engineering: A first course", 5th Edition, Prentice-Hall of India, New Delhi, 2009.
- 3. Poole Charles P. and Ownen Frank J., "Introduction to Nanotechnology", Wiley India, 2007.
- 4. William Fortune Smith and Javad Hashemi, "Foundations of Materials Science and Engineering", McGraw-Hill Education, 2006, New Delhi.
 - Pillai S.O., "Solid State Physics", 5th Edition, New Age International, New Delhi, 2003.

COURSE OUTCOMES

5.

On completion of the course the students will be able to

- CO1 Explain the various crystal systems and crystal defects.
- CO2 Comprehend the theory of conducting materials.
- CO3 Classify the types of semiconducting materials and to illustrate the device applications.
- CO4 Summarize the theory and applications of magnetic, superconducting and dielectric materials.
- CO5 Outline the properties and applications of smart materials and nano materials.

				141	apping	01 005	with I (JS and I	003					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3			2	2		2		1					
CO2	3			2	2		2		1					
CO3	3			2	2		2		1					
CO4	3			2	2		2		1					
CO5	3			2	2		2		1					
1 01 1 . 0			a a 1											

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL: 45

9

9

9

3

0

A

3

Q

14CYT21 ENVIRONMENTAL SCIENCE

(Common to all Engineering and Technology branches)

UNIT – I

Introduction to Environmental Studies and Natural Resources: Introduction to Environmental Science - Forest resources: Use and over-exploitation, deforestation, case studies. - Water resources: Use and over-utilization of surface and ground water, dams - benefits and problems - Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, case studies -Food resources: World food problems, changes caused by agriculture - effects of modern agriculture, fertilizer and pesticide problems, water logging, salinity, case studies - Energy resources: Growing energy needs, renewable and non-renewable energy sources, use of alternate energy sources, case studies - Land resources: Land as a resource - Conservation Practices - Role of an individual in conservation of natural resources.

UNIT – II

Ecosystems: Concept of an ecosystem - Components of an ecosystem - Structural and functional features - Functional attributes (Food chain and Food web only) - Ecological Succession- Introduction, types, characteristic features, structure and functions of the (a) Forest ecosystem (b) Aquatic ecosystems (ponds, rivers and oceans). Biodiversity: Introduction - Classification: genetic, species and ecosystem diversity - Bio geographical classification of India- Value of biodiversity: consumptive use, productive use, social, ethical, aesthetic, option values and ecosystem service value - Biodiversity at global, national and local level- Hotspots of biodiversity - Threats to biodiversity: habitat loss, poaching of wildlife, man-wildlife conflicts - Endangered and endemic species of India - In-situ and Exsitu conservation of biodiversity. 9

UNIT – III

Environmental Pollution: Definition - Causes, effects and control measures of: (a) Air pollution - Climate change, global warming, acid rain, ozone layer depletion (b)Water pollution (c) Soil pollution - Solid waste Management - Disaster management: floods, earthquake, cyclones and landslides - Role of an individual in prevention of pollution - Case studies. Water Treatment methods: Treatment of Water for Domestic Supply (Screening, Aeration, Sedimentation with Coagulation, Filtration and Disinfection methods) -Break point chlorination - Estimation of dissolved oxygen, BOD and COD - Sewage treatment (Primary, Secondary & Tertiary methods) - Introduction to industrial wastewater treatment using Reverse Osmosis Technology- Membrane Technology for wastewater treatment -Activated carbon in pollution abatement of wastewater. 9

UNIT - IV

Social Issues and the Environment: From Unsustainable to Sustainable development - Urban problems related to energy - Water conservation-Environmental ethics - Wasteland reclamation - Environment Production Act - Air (Prevention and control of pollution) Act - Water (Prevention and control of pollution) Act - Wildlife protection Act - Forest conservation Act - Issues involved in enforcement of environmental legislation - Public awareness. Human Population and the Environment: Introduction - Population growth - Variation of population based on age structure - Variation among nations - Population explosion - Family welfare programme - Value Education - HIV / AIDS - Women and Child welfare - Role of Information Technology in Environment and human health -Case studies. 9

UNIT - V

Green Chemistry for Sustainable Future: Water the greenest solvent - Role of catalyst - Biopolymers - Biofertilizers - Principle and applications of green chemistry. Food and Human Health: Introduction - Classification and applications of carbohydrates, amino acids, proteins, lipids and vitamins - Food additives - Balanced food - Minerals rich, carbohydrates rich and proteins rich - Chemistry of soft drinks - Oils and fats - Simple tests for identification of adulterants in food stuffs - Impacts of fluoride and arsenic on human health - Fluoride and arsenic removal methods - Significance of iodine, iron and calcium content in human health.

TEXT BOOKS:

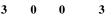
- Palanisamy P.N., Manikandan P., Geetha A., Manjula Rani K., "Environmental Science", Pearson Education, New Delhi, 1. Revised Edition 2014.
- Anubha Kaushik, and Kaushik C.P., "Environmental Science and Engineering", 4th multicolour Edition, New Age International 2. (P) Ltd., New Delhi, 2014.

REFERENCE BOOKS:

- 1. Erach Bharucha, "Textbook of Environmental Studies for Undergraduate Courses", 2005, University Grands Commission, Universities Press India Private Limited, Hyderguda, Hyderabad.
- Uppal M.M. revised by Bhatia S.C., "Environmental Chemistry", 6th Edition, Khanna Publishers, New Delhi, 2002. 2
- Bahl B.S. and Arun Bahl, "Advanced Organic Chemistry", 3rd Edition, S. Chand & Co., New Delhi, 2005. 3

COURSE OUTCOMES

On completion of the course the students will be able to


- CO1: Know the types of natural resources and the individual role in conserving the resources
- Understand the ecological balance and the preservation of biodiversity CO2:
- CO3: Gain the knowledge of the various types of pollution and the waste water treatment methods
- CO4: Attain the knowledge of various social issues and impact of population explosion on environment
 - CO5: Know about the green chemistry for sustainable future, food and human health

		1410	ipping or	Course	Jucome		viui i rog		comes (1	03)			
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	2			3	2	3	2	1	1			
CO2	3	2			3	2	3	2	1	1			
CO3	3	2			3	2	3	2	1	1			
CO4	3	2			3	2	3	2	1	1			
CO5	3	2			3	2	3	2	1	1			

Manning of Course Outcomes (COs) with Program Outcomes (POs)

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL : 45

14MET11 BASICS OF CIVIL AND MECHANICAL ENGINEERING

(Common to all Engineering and Technology branches)

0

3

PART-A: CIVIL ENGINEERING

5

5

3

UNIT – I

Introduction: History of civil engineering - Role and Functions of civil engineer - Fields of civil engineering UNIT-II

Building Materials: Introduction – Properties and applications of Construction Materials – bricks – stones – sand – cement - mortar- concrete - steel - glass-wood -plastics- ceramics -rubber- FRP - Non ferrous materials - Geosynthetics - Smart materials.

UNIT – III

Sub Structure: Soil - classification- bearing capacity- foundation -function- requirements- types-failures -remedial measures- machine foundation

UNIT – IV

Super Structures: Brick masonry – stone masonry – beams – columns - lintels - roofing - flooring - plastering- damp proofing- weathering course

UNIT – V

Interior design and Landscaping: History of Interior design-Importance of Interior design- Basic elements of Interior design. Landscape Architecture-Elements of Landscaping- Green Engineering

PART-B: MÉCHANICAL ENGINEERING

UNIT – I

Thermal Science: Laws of thermodynamics and their applications – Principle of operation of Steam, Diesel, Hydro-electric and Nuclear power plants - Classification of internal combustion engines and their working principles - Components of basic Vapour Compression Refrigeration system.

UNIT – II

Fluid Science: Properties of fluids – Classification of hydraulic turbines, working principle of Pelton turbine – Applications of steam and gas turbines. Classification of pumps, working principle of centrifugal and reciprocating pump UNIT – III 4

Mechanics and Materials: Classification of engineering materials - Mechanical properties of engineering materials-Definition and importance of stress and strain - Definition and importance of centre of gravity and moment of inertia. UNIT-IV

Mechanical Components And Their Applications: Basic principles and applications of power transmission systems such as belt, rope, chain and gear drives - Function and principles of coupling, clutch, brake, flywheel and governor 5 UNIT – V

Manufacturing Technology: Principle and applications of Metal forming process - Foundry, Forging. Principle and applications of Metal Joining process - Welding, Soldering and Brazing, Basics of CAD/CAM/CIM.

TOTAL: 45

TEXT BOOKS:

Palanichamy M.S., "Basic Civil Engineering", Tata McGraw-Hill, New Delhi, 2006.
 Pravin Kumar, "Basic Mechanical Engineering", Pearson Publishers, New Delhi, 2013.
 REFERENCE BOOKS:

- Rangawala S.C., "Engineering Materials" Charotor Publishing House(P) Ltd., Anand, 2013. 1.
- Punmia B.C., Ashok Kumar Jain, Arun Kumar Jain, "Building Construction," Laximi 2. Publications (P) Ltd., NewDelhi, 2005.
- Shanmugam G., "Basic Mechanical Engineering", Tata McGraw-Hill, New Delhi, 2005. 3.
- Venugopal K. and Prabhu Raja V., "Basic Mechanical Engineering", 6th Edition, Anuradha Publishers, Kumbakonam, 4. 2005.

COURSE OUTCOMES

On completion of the course the students will be able to

- select the suitable materials and components required for building construction CO1:
- demonstrate an understanding of basic concepts in thermal engineering CO2:
- demonstrate an understanding of basic concepts in fluid mechanics and fluid machines CO3:
- demonstrate an understanding of basic concepts in engineering mechanics and materials CO4:
- demonstrate an understanding of principles and applications of different mechanical components. CO5:
- demonstrate an understanding of principles and applications of various manufacturing process CO6:

Mapping of COs with POs and PSOs

						-								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2		2	1	2			2		2		
CO2	3	2	2		2	1	2			2		2		
CO3	3	2	2		2	1	2			2		2		
CO4	3	2	2		2	1	2			2		2		
CO5	3	2	2		2	1	2			2		2		
CO6	3	2	2		2	1	2			2		2		
4 011 1														

1 -Slight, 2 -Moderate, 3 -Substantial

4

14MEC11 ENGINEERING DRAWING

(Common to all Engineering and Technology branches) 2

Pre-requisites: Basic knowledge in practical geometry construction and mathematics

UNIT – I

General Principles of Orthographic Projection: Importance of graphics in engineering applications – Use of drafting instruments - BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning. Projections of Points, Lines and Planes. General principles of orthographic projection - First angle projection - Layout of views - Projection of points, located in all quadrant and straight lines located in the first quadrant - Determination of true lengths and true inclinations and location of traces - Projection of polygonal surface and circular lamina inclined to both reference planes.

UNIT

Π

Projections of Solid: Projections of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to one reference plane by change of position method.

UNIT _

Ш

Sectioning of Solids: Sectioning of solids- prisms, pyramids, cylinder and cone in simple vertical position by cutting planes inclined to one reference plane and perpendicular to the other – Obtaining true shape of section.

UNIT

IV

Development of Surfaces: Development of lateral surfaces of simple and truncated solids – prisms, pyramids, cylinders and cone with cutout, perpendicular and inclined to the horizontal axis.

UNIT - V

Isometric and Perspective Projection: Principles of isometric projection - isometric scale - isometric projections of simple solids, truncated prisms, pyramids, cylinders and cones Conversion of isometric projection into orthographic projection. Perspective projection of prisms, pyramids and cylinders by visual ray method.

TEXT BOOKS:

- 1.
- Basant Agarwal and Agarwal C.M., "Engineering Drawing", Tata McGraw-Hill, New Delhi, 2008. Venugopal K. and Prabhu Raja V., "Engineering Graphics", New Age International (P) Limited, New Delhi, 2008. 2.

REFERENCE BOOKS:

- Bhatt N.D., "Engineering Drawing", 46th Edition, Charotar Publishing House, Anand, 2003. 1.
- Gopalakrishnana K.R., "Engineering Drawing", Volume. I & II, Subhas Publications, 2. Bangaluru, 2006.
- Dhananjay A. Jolhe, "Engineering Drawing with an introduction to AutoCAD", Tata McGraw Hill, New Delhi, 3. 2008.

COURSE OUTCOMES

On completion of the course the students will be able to

- gain knowledge on international standards of drawings and to draw the different types of projections for CO1: points, lines and planes
- draw the different positions of 3D primitive objects like cube, cone, cylinder, etc. CO2:
- CO3: draw sections of solids including prisms, pyramids, cylinders and cones
- CO4: understand the concepts of development of surfaces of simple and truncated solids
- CO5: draw the isometric and perspective projections for the given object

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	3		2	1				2		2		
CO2	3	2	3		2	1				2		2		
CO3	3	2	3		2	1				2		2		
CO4	3	2	3		2	1				2		2		
CO5	3	2	3		2	1				2		2		

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

27/106

TOTAL : 45

9

9

9

9

3

9

0

14VEC11 VALUE EDUCATION

(Common to all Engineering and Technology branches)

UNIT – I

Philosophy of Life Science: Life – Purpose of life (four stages of life) – Philosophy of life (who am 'I') – Law of nature (cause of the life and body) – Content of the Life (five sheaths) – Goal of life. Five duties in life.

Methodology: Life and messages of spiritual and national leaders– The forgotten hero, etc.

Project report: Complementing with happiness - Every soul is potentially divine

UNIT – II

Human Values-Moral foundation: Truth, forgiveness, compassion, endurance, humility, non violence, moderate diet, non stealing, self purification, self discipline, self study, content, cleanliness, honesty, and totality in faith–Good habits – Attitude forming for Individual peace.

Practical Methods: Personal experience with above characters, Puranic Stories - Self resolve diary maintenance

UNIT – III

Social Values: Family – Family System - Greatness of women – World brotherhood (vasudeiva kudumbagam) – Glorious Bharath - Bharathian systems - Past – Present – Future - Team spirit - Goal setting – Economics – Education – Politics – Responsibilities of people – Preserving natural resources.

Methodology: Preparing an album on glorious Bharath Past, Present and Future Plans. Goal setting - Management Games. Team Spirit - Yogic Games.

UNIT – IV

Development of Mental Prosperity: Prosperity of mind – Functions of mind - Obstacles of mind - Practical method to perfect mind is yoga – Types – Uses – Precaution – Contradiction – Kriyas - Asanas – Pranayamas – Meditative techniques.

Methodology: Asana - Pranayama – Cyclic meditation – Nada anu sandhana – Meditation – Yogic games for memory. Album on asanas, pranayama and mantra.

$\mathbf{UNIT} - \mathbf{V}$

Maintenance of Physical Health: Human body – Structure - Ten Systems of the body as per modern science. Five elements - Harmonious relationship – Life force – Conserving vitality & health through natural life – Pranic food and its importance – Uses of herbs - Right way of cooking to preserve nutrients - Cause of the disease – Acute and chronic - Disease - Life and death.

Methodology: Natural food making, traditional millet dishes. Asanas, pranayamas, cleansing procedures, Quiz on healthy living, Uses of herbs or kitchen garden.

TEXT BOOK:

1. "Value Education", compiled by Vethathiri Maharishi Institute for Spiritual and Intuitional Education, Aliyar, Pollachi, for Kongu Engineering College.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: understand the purpose and value of life
- CO2: exhibit positive human values
- CO3: understand social values

CO4: take steps to develop mental and physical health

Mapping of COs with POs and PSOs

					rr c			e # 00==02						
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						3		3				3		
CO2						3		3				3		
CO3						3		3				3		
CO4						3		3				3		

1 – Slight, 2 – Moderate, 3 – Substantial

6

6

1

6

6

6

0

2

1

TOTAL : 30

14PHL21 PHYSICAL SCIENCES LABORATORY II

(Common to all Engineering and Technology branches)

PART-A: APPLIED PHYSICS LABORATORY (Any five experiments)

LIST OF EXPERIMENTS:

- 1. Determination of band gap of a semiconductor material using post office box.
- 2. Determination of dispersive power of a prism using spectrometer.
- 3. Determination of viscosity of liquid Poiseuille's method.
- 4. Determination of thickness of a thin wire air wedge method.
- 5. Determination of AC frequency using Melde's string experiment.
- 6. Determination of hysteresis loss in a ferromagnetic material.

Demonstration

- 1. Thin film deposition using RF magnetron sputtering technique
- 2. Synthesis of nano-particles
- 3. Phase change memory materials RW CD / DVD

PART - B: APPLIED CHEMISTRY LABORATORY (Any five experiments)

LIST OF EXPERIMENTS:

- 1. Estimation of Chloride in the given water sample.
- 2. Determination of Dissolved Oxygen in the given wastewater sample.
- 3. Estimation of Ferrous ion in the given solution.
- 4. Estimation of Copper in the given solution by Iodometric method.
- 5. Estimation of Chromium (Cr^{6+}) in the wastewater.
- 6. Estimation of copper content of the given solution by EDTA method.

Demonstration

- 1. Turbidity measurement using Nephelometer
- 2. COD analyzer
- 3. Dissolved Oxygen measurement using DO analyzer

REFERENCES / MANUALS / SOFTWARE:

- 1. Physics Laboratory Manual -Dr.K.Tamilarasan and Dr.K.Prabu
- 2. Chemistry Laboratory Manual- Dr.P.N.Palanisamy, P.Manikandan, A.Geetha and

K.Manjularani

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Describe the basics of band gap of semiconductors, dispersive power of a prism, viscosity of liquids, interference of light, AC frequency and hysteresis of ferromagnetic materials.
- CO2: Operate the instruments like post office box, air wedge arrangement, Melde's string apparatus and hysteresis arrangement, and to measure the related parameters
- CO3: Estimate the amount of DO and chloride in a given water sample

CO4: Determine the amount of chromium, ferrous ion and copper in waste water

Mapping of Course Outcomes (COs) with Program Outcomes (POs)

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PSO1	PSO2
CO1	3	3		2	1		2		2				
CO2	3	3		2	1		2		2				
CO3	3	3		2	1		2		2				
CO4	3	3		2	1		2		2				

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL : 45

3 1

Λ

14MEL11 BASICS OF CIVIL AND MECHANICAL ENGINEERING LABORATORY

(Common to all Engineering and Technology branches)

LIST OF EXPERIMENTS:

- 1. To prepare a square or rectangular shaped two identical MS plates by cutting and filing operations
- 2. To prepare a square/rectangular/circular/trapezoidal/Vshaped projection and its counterpart formating from the given square or rectangular MS plates.

0

0

3

- 3. To carryout drilling, tapping and assembly on the given MS plates.
- 4. To carryout thread forming on a GI and PVC pipes and cut to the required length.
- 5. To use various pipe fitting accessories and prepare water leak proof water line from overhead tank.
- 6. To prepare a T/L/Lap joint from the given wooden work pieces.
- 7. To prepare a plywood box/tray to the given dimensions.
- 8. To prepare a leak proof sheet metal tray/box/funnel to the given dimensions.
- 9. Cutting of MS plates by gas cutting method and arc weld joining by Lap/Butt/T joint method
- 10. Preparing a simple PVC window/door frame assembly.
- 11. Preparing a simple memento or similar articles using wood/sheet metal
- 12. Preparing innovative articles involving waste metals.

REFERENCES / MANUALS / SOFTWARE:

- 1. Introduction to basic manufacturing processes and workshop technology by Rajender Singh, New Age International (P) Limited, 2006.
- 2. Elements of Workshop Technology by S.K.Hajra Choudhury, Media Promoters, 2009.
 - CO1: demonstrate knowledge on safety and adhere to safety features
 - CO2: mark the given dimensions accurately and execute cutting and joining operations
 - CO3: select methods and tools and execute the given experiments
 - CO4: finish the job to the requirements and quantify the accuracy
 - CO5: plan and complete simple and innovative articles

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	1	2		2	2	1		2	2		2		
CO2	3	1	2		2	2	1		2	2		2		
CO3	3	1	2		2	2	1		2	2		2		
CO4	3	1	2		2	2	1		2	2		2		
CO5	3	1	2		2	2	1		2	2		2		

1 – Slight, 2 – Moderate, 3 – Substantial 1

TOTAL : 45

14MAT31 MATHEMATICS III

(Common to all Engineering and Technology Branches)

UNIT – I

Fourier Series: Dirichlet's conditions - General Fourier series - Change of interval - Odd and even functions - Half range Sine series – Half range Cosine series – Harmonic analysis.

UNIT – II

Partial Differential Equations: Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions - Lagrange's linear equation - Homogeneous linear partial differential equations of higher order with constant coefficients.

UNIT - III

Applications of Partial Differential Equations: Classification of second order quasi linear partial differential equations -Solutions of one dimensional wave equation - One dimensional heat equation - Steady state solution of two dimensional heat equation (excluding insulated edges).

UNIT – IV

Fourier Transform: Fourier Integral theorem (without proof) - Fourier transform pair - Properties - Transforms of simple functions - Fourier Sine and Cosine transforms - Convolution theorem and Parseval's identity (Statement and applications only).

UNIT – V

Z - Transform: Definition – Elementary properties – Z-transform of some basic functions – Inverse Z-transform -Partial fraction method – Residue method – Convolution theorem – Applications of Z-transforms - Solution of difference equations. Lecture: 45, Tutorial: 15, TOTAL: 60

TEXT BOOKS:

- Kandasamy P., Thilagavathy K. and Gunavathy K., "Engineering Mathematics, Volume III", Reprint Edition, 1. S.Chand & Co., New Delhi, 2014.
- Veerarajan T., "Transforms and Partial Differential Equations", 3rd Reprint, Tata McGraw Hill Education Pvt. Ltd., 2. New Delhi, 2013.

REFERENCE BOOKS:

- Grewal B.S., "Higher Engineering Mathematics", 43rd Edition, Khanna Publishers, Delhi, 2014. 1.
- Jain R.K. and Iyengar S.R.K., "Advanced Engineering Mathematics", Reprint Edition, Narosa Publishing House, 2. New Delhi, 2014.
- Bali N.P. and Manish Goyal, "A Text Book of Engineering Mathematics", 9th Edition, Laxmi Publications, New 3. Delhi, 2014.
- Ramana B.V., "Higher Engineering Mathematics", 11th Reprint, Tata McGraw Hill Publishing Company, New Delhi, 4. 2010.
- Erwin Kreyzig, "Advanced Engineering Mathematics", 10th Edition, Wiley & Co, 2011. 5.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Expand a function in terms of Fourier series and apply it for solving engineering problems
- CO2: Model and solve higher order partial differential equations
- CO3: Apply the methods of solving PDE in practical problems
- Gain knowledge on Fourier transforms CO4:

CO5: Handle problems in Z transforms and apply it to solve difference equations

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1								1	2	1
CO2	3	3	1	1								1	2	1
CO3	3	3	1	1								1	2	1
CO4	3	3	1	1								1	1	
CO5	3	3	1	1								1	1	

1 – Slight, 2 – Moderate, 3 – Substantial

9

Q

1

0

9

9

14ITT31 DATA STRUCTURES AND ALGORITHMS ANALYSIS I

Pre-requisites: Problem Solving and Programming

UNIT – I

Basic Concepts: Introduction-Fundamentals of Algorithmic Problem Solving-Analysis Framework-Asymptotic Notations and Basic Efficiency Classes.

UNIT – II

Mathematical Analysis: Non-Recursive Algorithm – Bruteforce approach: Selection Sort-Element Uniqueness-Sequential Search-Maximum Element in an Array-Recursive Algorithm –Divide and conquer approach: Binary Search-Factorial-Fibonacci Series.

UNIT – III

Basic Data Structures: Abstract Data Type (ADT)-Stack ADT-Applications-Expression Conversion-Evaluation-Queue ADT-Types of Queue-Applications-Circular Queue.

UNIT – IV

Linked List and its Types: Dynamic Memory Allocation-List ADT-Singly Linked List-Doubly Linked List-Circular Linked List-Running time calculations-Application-Polynomial Manipulations

UNIT – V

Trees: Tree Terminologies-Types-Tree Traversals-Binary Tree-Expression Tree-Binary Search Tree-Analysis-Priority Queue-Analysis

TEXT BOOKS:

- 1. Weiss, M.A., "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education Asia, New Delhi, 2002.
- 2. Levitin Anany, "Introduction to Design and Analysis of Algorithms", 2nd Edition, Pearson Education Asia, Singapore, 2007.

REFERENCE BOOKS:

- 1. Dey, Pradep and Ghosh, Manas, "Computer Fundamentals and Programming in C", Oxford University Press, New Delhi, 2006.
- 2. Langsam, Y., Augenstein, M.J. and Tenenbaum, A.M., "Data Structures using C", Pearson Education Asia, New Delhi, 2004.
- 3. Gilberg, Richard F. and Forouzan, Behrouz A., "Data Structures A Pseudocode Approach with C", Thomson Brooks / COLE, Singapore, 1998.
 - CO1: Understand the fundamentals of algorithmic problem solving
 - CO2: Analyze efficiency of the algorithm
 - CO3: Design and apply iterative and recursive algorithms
 - CO4: Implement and apply lists, stack and queues
 - CO5: Understand the various approaches of tree and its analysis

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3									3	1	1
CO2	3	3	3									3	3	3
CO3	3	3	3									2	2	3
CO4	3	3	3									2	1	1
CO5	3	3	3									2	1	1

1 – Slight, 2 – Moderate, 3 – Substantial

3

9

9

9

9

9

TOTAL: 45

14ITT32 DIGITAL PRINCIPLES AND DESIGN

UNIT – I

Boolean Algebra and Logic Gates: Number Systems and their Conversions– Complements – Signed Binary numbers-Binary codes: Weighted –BCD-2421-Gray code- Excess 3 code- Binary Arithmetic. Boolean algebra: Basic theorems and properties of Boolean Algebra - Boolean Functions- Minimization of Boolean Functions - Canonical and Standard Forms: Minterms - Maxterms – Sum of Products (SOP) –Product of Sums (POS)- Conversion between Canonical Forms – Gate-Level Minimization: Karnaugh Map - Don't care conditions - Tabulation Method-Logic Gates: Implementations of Functions using logic gates- NAND and NOR Implementations.

UNIT – II

Combinational Logic: Design procedure of Combinational circuits – Adders -Subtractors – Parallel adder/ Subtractor-Carry lookahead adder- BCD adder- Magnitude Comparator- Multiplexer-Demultiplexer- Encoder- Decoder –Priority Encoder- Parity Generator and Checker – Code Converters- Implementation of combinational logic using Multiplexers and Decoders.

UNIT – III

Synchronous Sequential Logic, Registers and Counters: Sequential Circuits - Flip flops SR, JK, T, D and Master Slave – Characteristic and Excitation tables and Equations –Level and Edge Triggering –Realization of one flip flop using other flip flops – Analysis and Design of Sequential Circuits with State Diagram, State Table, State Minimization and State Assignment- Registers – Shift Registers- Universal Shift Register -Ripple Counters –Synchronous Counters- Ring Counter – Johnson Counter .

UNIT – IV

Asynchronous Sequential Logic: Analysis and Design of Asynchronous Sequential Circuits - Primitive Flow Table – Minimization of Primitive Flow Table – State Assignment – Cycles – Races –Hazards: Static –Dynamic –Essential – Hazards Elimination.

UNIT – V

Memory and Programmable Logic: Classification of Memories –Random Access Memory – Write operation –Read operation – Memory Cycle: Timing Waveforms – Memory decoding – Memory Expansion –Read Only Memory-Programmable Logic Devices: Programmable Logic Array (PLA)- Programmable Array Logic (PAL)

Lectures: 45, Tutorial: 15, TOTAL: 60

3

1

TEXT BOOKS:

1. Morris Mano M., "Digital Design", 4th Edition, Prentice Hall of India, New Delhi, 2008.

REFERENCE BOOKS:

- 1. John M. Yarbrough, "Digital Logic Applications and Design", Thomson Learning, 2006.
- 2. Donald P. Leach and Albert Paul Malvino, "Digital Principles and Applications", 6th Edition, Tata McGraw Hill Publishing Company, 2006.
- 3. Charles H. Roth, "Fundamentals of Logic Design", 6th Edition, Thomson Learning, 2013.
- 4. John F. Wakerly, "Digital Design", 4th Edition, Pearson/Prentice Hall of India, 2008.
- 5. Thomas L. Floyd, "Digital Fundamentals", 10th Edition, Pearson Education Inc., 2011.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Have the knowledge of number systems and Boolean algebra
- CO2: Design various combinational circuits
- CO3: Design various synchronous sequential circuits
- CO4: Design Asynchronous sequential circuits
- CO5: Understand and design the concept of memory and programmable logic

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3					1				2	1
CO2	2	3		3					2				2	2
CO3	2	3		3					1				2	2
CO4	2	3		3					1				2	2
CO5	2	2		3					2				2	3

1 - Slight, 2 - Moderate, 3 - Substantial

9

9

9

9

. 9

4

14CST32 OBJECT ORIENTED PROGRAMMING USING C++ (Common to CSE & IT branches)

Pre-requisites: Problem Solving and Programming **UNIT – I**

Object-Oriented Programming: The Object-Oriented Approach- Characteristics of Object-Oriented Languages- C++ Programming Basics : Loops and Decisions - Functions : Passing Arguments to Functions - Returning Values from Functions - Reference Arguments - Overloaded Functions – Recursion - Inline Functions - Default Arguments - Scope and Storage Class.

UNIT – II

Objects and Classes: A Simple Class - Objects as Data Types - Constructors – Constructor Types - Objects as Function Arguments - The Default Copy Constructor - Returning Objects from Functions - Classes, Objects and Memory - Static Class Data – Arrays : Arrays as Class Member Data - Arrays of Objects – Namespaces.

UNIT – III

Operator Overloading and Inheritance: Operator Overloading : Overloading Unary Operators - Overloading Binary Operators -Overloading the Assignment Operator- Data Conversion–Inheritance : Derived Class and Base Class - Derived Class Constructors - Overriding Member Functions - Class Hierarchies - Public and Private Inheritance - Types of inheritance- Strings : The Standard C++ string Class

UNIT – IV

Pointers, Virtual and Friend Functions: Pointers : Addresses and Pointers - The Address-of Operator & - Memory Management: new and delete - Virtual Functions : Normal Member Functions Accessed with Pointers - Virtual Member Functions Accessed with Pointers - Abstract Classes and Pure Virtual Functions - Friend Functions : Friends as Bridges - Static Functions.

UNIT – V

IO Streams, Template and Exceptions: Streams and Files : Stream Classes - Disk File I/O with Streams : Writing Data - Reading Data - Character I/O - Binary I/O - Templates and Exceptions : Function Templates - Class Templates - Exceptions.

TEXT BOOKS:

1. Robert Lafore, "Object Oriented Programming in C++", 4th Edition, SAMS Publishers, 2001.

REFERENCE BOOKS:

- 1. Trivedi B., "Programming with ANSI C++", 2nd Edition, Oxford University Press, Oxford University, 2012.
- 2. Eckel B and Allison C, "Thinking in C++ Volume Two: Practical Programming", Pearson Education, New Delhi, 2004.
- 3. Lippman S.B., Lajoie Josee and Moo Barbara E., "C++ Primer", 4th Edition, Pearson Education, New Delhi, 2005.
- 4. Stroustrup B., "The C++ Programming Language", 3rd Edition, Pearson Education, New Delhi, 2004.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: explain the basic concepts of object oriented programming with C++
- CO2: relate real world problems to classes and objects
- CO3: apply data encapsulation, inheritance and polymorphism to simple applications
- CO4: examine the application of advanced concepts like pointers, virtual functions and friend functions
- CO5: utilize the features of templates, exception and file handling mechanisms

Mapping of COs with POs and PSOs

					rre									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	3									1	1	2
CO2	3	3	2									1	3	3
CO3	1	3	3									1	1	3
CO4	2	3	2									1	1	3
CO5		3	3									1	1	3

1 - Slight, 2 - Moderate, 3 - Substantial

9

TOTAL: 45

0 0 3

3

9

9

14CST33 COMPUTER ORGANIZATION

(Common to CSE & IT branches)

UNIT – I

Basic Structure of Computers and Machine Instructions: Functional units - Basic operational concepts - Bus structures - Software - performance - Memory locations and addresses - Memory operations - Instruction and instruction sequencing - Addressing modes - Assembly language - Basic I/O Operations

UNIT - II

Arithmetic Unit: Addition and subtraction of signed numbers - Design of fast adders - Multiplication of positive numbers - Signed operand multiplication - Fast multiplication - Integer Division - Floating point numbers and Operations.

UNIT - III

Basic Processing Unit: Fundamental concepts – Execution of a complete instruction – Multiple bus organization – Hardwired control - Microprogrammed control: Microprogram Sequencing -Wide Branch Addressing. Pipelining - Basic concepts - Data hazards - Instruction hazards - Superscalar operation.

UNIT - IV

Memory System: Basic concepts – Semiconductor RAM: Internal Organization of Memory chips-Static Memories – Asynchronous DRAMs - Synchronous DRAMs- ROMs - Speed, Size and Cost - Cache memories - Performance consideration - Virtual memory - Secondary Storage.

UNIT – V

I/O Organization: Accessing I/O devices - Interrupts: Interrupt Hardware-Enabling and Disabling Interrupts-Handling Multiple Devices - Direct Memory Access - Buses - Interface Circuits - Standard I/O Interfaces: SCSI and USB.

TEXT BOOKS:

Hamacher Carl, Vranesic Zvonko, and Zaky Safwat, "Computer Organization", 6th Edition, McGraw Hill, New York, 1. 2013

REFERENCE BOOKS:

- Haves, John P., "Computer Architecture and Organization", 3rd Edition, Tata McGraw Hill Publishing Company, 1. New Delhi, 2008.
- 2. Patterson David, A. and Hennessy John L., "Computer Organization and Design: The Hardware / Software Interface", 2nd Edition, Harcourt Asia, Morgan Kaufmann, Singapore, 2009.
- Stallings William, "Computer Organization and Architecture: Designing for Performance", 6th Edition, Pearson 3. Education, New Delhi, 2003.
- Heuring V.P. and Jordan H.F., "Computer Systems Design and Architecture", 2nd Edition, Pearson Education, New 4. Delhi, 2004.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: describe the basic structure and operation of a digital computer
- CO2: identify the operations of the arithmetic unit including the algorithms
- CO3: illustrate the saliency of central processing unit and pipelining
- analyze the memory sub-system of a typical computer CO4:
- compare the different ways of communication with I/O devices and standard I/O interfaces CO5:

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2									2	2	
CO2	2	2	2									1	2	
CO3	1		1									1	2	1
CO4	1	3	2									2	2	1
CO5	1	3	2									2	2	

1 – Slight, 2 – Moderate, 3 – Substantial

3 0 0 3 9

9

Q

9

Q

TOTAL: 45

14ECT33 COMMUNICATION ENGINEERING (Common to EEE, EIE, CSE & IT branches)

UNIT – I

Amplitude Modulation: Principles of amplitude modulation - AM envelope - Frequency spectrum and bandwidth Modulation index and percentage modulation - AM power distribution - AM modulator circuits - Low level AM modulator - AM transmitters - Low level transmitter - AM receivers - Superheterodyne receivers

UNIT – II

Angle Modulation: Angle Modulation - FM and PM waveforms - Phase deviation and modulation index - Frequency deviation - Direct FM and PM demodulators - Frequency spectrum of angle modulated waves - Bandwidth requirement -Narrowband FM and Broadband FM - Average power - FM and PM modulators, Direct FM transmitter - Angle modulation vs. amplitude modulation - Double conversion FM receivers - PLL FM demodulator.

UNIT – III

Digital Modulation: Sampling - Time Division Multiplexing - Digital T-carrier System - Pulse code modulation -Amplitude shift keying - Frequency and phase shift keying - Modulator and demodulator - bit error rate calculation

UNIT – IV

Data Communication: Data communication codes: ASCII - BAR codes - Error Control - Error Detection - Redundancy checking - Error Correction - Hamming – Line coding : AMI – NRZ - RZ - Serial interfaces : RS232 - RS485 - Data communication circuits - Data communication modems - Public Switched Telephone Network(PSTN) – ISDN

UNIT - V

Wireless Technologies: Cellular telephone systems – Cellular concepts – Second generation (2G) Third generation (3G) and (4G) cell phone systems - PANs and Bluetooth - Zigbee and Mesh wireless networks - Infrared wireless networks

TEXT BOOKS:

Wayne Tomasi, "Electronic Communications Systems: Fundamentals Through Advanced", 5th Edition, Pearson 1. Education, 2008.

REFERENCE BOOKS:

- Michael Moher and Simon Haykin, "Communication System", 5th Edition, Wiley India Pvt. Ltd., 2011. 1.
- Frenzel and Louis E., "Principles of Electronic Communication Systems", 3rd Edition, Tata McGraw Hill Publishing 2. Company, New Delhi, 2008.
- 3. Anokh Singh, "Principles of Communication Engineering", S. Chand & Co., New Delhi, 2006.

COURSE OUTCOMES

On completion of the course the students will be able to

- paraphrase amplitude and angle modulation techniques CO1:
- CO2: learn the concepts of digital modulation techniques
- CO3: summarize the concepts in data communication and network protocol
- identify the cellular telephone systems and concepts CO4:
- identify the next generation wireless technologies CO5:

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	2									2	1
CO2	3	3	3	2									2	1
CO3	3	3	3	3									2	2
CO4	3	3	3	3									2	2
CO5	3	3	3	3									2	2

1 – Slight, 2 – Moderate, 3 – Substantial

9

3 9

3

0

0

9

9

9

TOTAL: 45

14ITL31 DATA STRUCTURES AND ALGORITHMS ANALYSIS LABORATORY

LIST OF EXPERIMENTS / EXERCISES:

- 1. Implement selection sort and its analysis.
- 2. Program to find maximum element in an array and its analysis
- 3. Program to implement binary search and its analysis
- 4. Program to implement stack and queue using array.
- 5. Program to implement singly linked list ADT.
- 6. Program to implement stack and queue using linked list ADT.
- 7. Develop an application for polynomial manipulations using list ADT.
- 8. Program to implement binary search tree operations.
- 9. Program to implement priority queue.
- 10. Case Study Implement the following any one problem from each design techniques and compute its time efficiency:
 - (i) Brute force Naive string matching/Word find/Battle ship game
 - (ii) Divide and conquer Dutch flag problem/Picture guessing/Chocolate bar puzzle.

TOTAL : 45

0

0

3 1

REFERENCES / MANUALS / SOFTWARE:

- 1. Operating System : Linux
- 2. Compiler : GCC

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Design and implement different application using pointers and dynamic memory allocation
- CO2: Analyze the time efficiency of recursive and non -recursive algorithms
- CO3: Develop application using Brute force and Divide and conquer technique

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	1									2	2	1
CO2	3	3	2									2	3	3
CO3	3	3	1									2	3	3

Mapping of COs with POs and PSOs

1 - Slight, 2 - Moderate, 3 - Substantial

14ITL32 DIGITAL LABORATORY

0 0 3 1 LIST OF EXPERIMENTS / EXERCISES: 1. Verification of truth table using digital logic gates 2. Verification of boolean theorems using digital logic gates. 3. Implement the following combinational logic circuits using ICs 1.Half adder 2.Full adder 3.Half subtractor 4.Full subtractor 4. Design and implementation of code converters. 1.BCD to Excess-3 2.Binary to Gray 5. Design and implementation of 4 bit binary adder / subtractor Design and implementation of parity generator / checker 6. 7. Design and implementation of magnitude comparator 8. Design and implementation of multiplexers and demultiplexers 9. Design and implementation of decoders and encoders 10. Truth table verification of flip-flops using ICs. 11. Implement the following registers using ICs 1. Serial In – Serial Out 2. Serial In – Parallel Out 3. Parallell In – Parallel Out 12. Design and implementation of synchronous counters 13. Design and implementation of asynchronous counters **TOTAL: 45 REFERENCES / MANUALS / SOFTWARE:** 1. Lab Manual

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Use Boolean simplification techniques to design and implement combinational circuits
- CO2: Design and implement various Flip-Flops using logical gates
- CO3: Design and implement sequential circuits

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		3					1				3	2
CO2	3	2		3					1				2	2
CO3	3	2		3					1				2	2

1 - Slight, 2 - Moderate, 3 - Substantial

14CSL32 OBJECT ORIENTED PROGRAMMING USING C++ LABORATORY

(Common to CSE & IT branches)

LIST OF EXPERIMENTS / EXERCISES:

- 1. Design C++ classes with data members and member functions
- 2. Design C++ classes with static members and member functions with default arguments
- 3. Design C++ classes with friend functions and function overloading
- 4. Program using different types of constructors and destructor
- 5. Implement matrix class with dynamic memory allocation and necessary methods
- 6. Implement complex number class with unary and binary operator overloading
- 7. Overload the new and delete operators to provide custom dynamic allocation of memory
- 8. Implement different types of inheritances
- 9. Develop suitable hierarchy of classes to demonstrate dynamic polymorphism
- 10. Implement programs with sequential access and random access file
- 11. Develop function templates of standard sorting algorithms such as bubble sort, insertion sort
- 12. Design stack and queue classes with necessary exception handling
- 13. Program to create simple manipulator and namespace

REFERENCES / MANUALS / SOFTWARE:

- 1. Linux Operating System
- 2. C ++ Compiler

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: identify and create objects and their members for a given problem
- CO2: experiment the use of friend function, static function, constructor and destructor
- CO3: develop programs using various types of operator and function overloading
- CO4: demonstrate the use of inheritance and runtime polymorphism
- CO5: apply the concepts of files and templates

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	3	3								1	2	2
CO2		2	3	3								1	2	2
CO3		3	3	3								1	1	3
CO4		3	3	3								1	1	3
CO5		3	3	3								1	1	3

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL: 45

0 0 3 1

14MAT43 DISCRETE MATHEMATICS (Common to CSE & IT branches)

UNIT – I

Propositional Calculus: Propositions – Logical connectives – Compound propositions – Conditional and biconditional propositions – Truth tables – Tautologies and contradictions – Contrapositive – Logical equivalences and implications – DeMorgan's Laws – Normal forms – Principal conjunctive and disjunctive normal forms – Rules of inference – Arguments – Validity of arguments

UNIT – II

Predicate Calculus: Predicates – Statement function – Variables – Free and bound variables – Quantifiers – Universe of discourse – Logical equivalences and implications for quantified statements – Theory of inference – The rules of universal specification and generalization – Validity of arguments.

UNIT – III

Set Theory: Cartesian product of sets – Relations on sets – Types of relations and their properties – Relational matrix and the graph of a relation – Equivalence relations – Partial ordering – Poset – Hasse diagram – Lattices – Properties of lattices.

UNIT – IV

Functions: Definition – Classification of functions – Composition of functions – Inverse functions – Binary and n-ary operations – Characteristic function of a set – Permutation functions.

$\mathbf{UNIT} - \mathbf{V}$

Group Theory: Groups and Subgroups (Definitions only) – Homomorphism – Cosets – Lagrange's theorem – Normal subgroups – Coding Theory – Group codes – Basic notions of error correction - Error recovery in group codes (Excluding theorems in coding theory).

TEXT BOOKS:

- 1. Trembaly J.P. and Manohar R., "Discrete Mathematical Structures with Applications to Computer Science", 30th Reprint, Tata McGraw Hill Publishing Company, New Delhi, 2011.
- 2. Veerarajan T., "Discrete Mathematics with Graph Theory and Combinatorics", Reprint Edition, Tata McGraw Hill Publishing Company, New Delhi, 2013.

REFERENCE BOOKS:

- 1. Kenneth H. Rosen, "Discrete Mathematics and its Applications", 7th Edition, Tata McGraw Hill Publishing Company, 2012.
- 2. Bernard Kolman, Robert C. Busby and Sharon Cutler Ross, "Discrete Mathematical Structures", 6th Edition, Pearson Education, New Delhi, 2009.
- 3. Venkatraman M.K., Sridharan N. and Chandrasekaran N., "Discrete Mathematics", The National Publishing Company, Chennai, 2007.
- 4. Doerr Alan and Kenneth Levassaur, "Applied Discrete Structures for Computer Science", 2nd Edition, Galgotia Publications Pvt., Ltd., New Delhi, 2010.
- 5. Judith L Gersting, "Mathematical Structures for Computer Science", 6th Edition, W. H. Freeman & Co., New York, 2006.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Use mathematical proof techniques to solve computing problems.
- CO2: Know how to construct algorithms and derive complexities.
- CO3: Possess knowledge of sets that are required for developing computational models.
- CO4: Perform computational operations associated with functions.
- CO5: Implement the concepts of group structures in coding theory.

Mapping of COs with POs and P	PSOs
-------------------------------	-------------

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1								1	2	1
CO2	3	3	2	1								1	2	1
CO3	3	3	2	1								1	2	1
CO4	3	3	1									1	2	1
CO5	3	3	2	1								1	2	1

1 - Slight, 2 - Moderate, 3 - Substantial

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

1 0 4

9

9

9

9

3

Lecture: 45, Tutorial: 15, TOTAL: 60

14ITT41 DATA STRUCTURES AND ALGORITHMS ANALYSIS II

Pre-requisites :Data Structures and Algorithms Analysis I **UNIT – I**

Balanced Search Trees: Tree Terminologies-Algorithm Design Techniques –Transform and Conquer-AVL Tree-2-3 Tree-B Tree - B+ Tree- Analysis.

UNIT – II

Hashing: Hashing-Collision Resolution Techniques-Separate Chaining-Open Addressing-Linear Probing-Quadratic Probing-Double Hashing-Analysis.

UNIT – III

Sorting: Algorithm Design Techniques –Decrease and Conquer- Insertion Sort-Shell Sort-Bubble Sort-Quick Sort-Merge Sort-Analysis-Pre Sorting-Computing Mode-Element Uniqueness-Sequential Search –Analysis.

UNIT – IV

Graph : Graph Terminologies-Types-Representation of Graphs-Graph Traversals-DFS-BFS-Analysis-Topological Sorting-Greedy techniques-Dijkstras-Prims-Kruskals Algorithm-Huffman Trees-Analysis.

UNIT – V

Dynamic Programming: Warshall and Floyd Algorithm-Branch and Bound-Knapsack problem-Travelling Salesman Problem-Backtracking-N-Queens Problem-Subset-Sum Problem-Introduction to P,NP and NP Complete Problems.

TEXT BOOKS:

- 1. Levitin Anany, "Introduction to Design and Analysis of Algorithms", 2nd Edition, Pearson Education Asia, Singapore, 2007.
- 2. Weiss, M. A., "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education Asia, New Delhi, 2002.

REFERENCE BOOKS:

- 1. Jon Kleinberg and Éva Tardos,"Algorithm Design, Pearson Education Asia, Singapore, 2008.
- 2. Cormen T.H., Leiserson C.E., Rivest R.L, and Stein C., "Introduction to Algorithms", Prentice Hall of India, New Delhi, 2001.
- 3. Aho A.V, HopCroft J.E., and Ulman J.D.,"The Design and Analysis of Computer Algorithms", Pearson Education Asia, Singapore, 2003.
- Course
Code14ITT41Course TitleData Structures and Algorithms Analysis II

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Interpret the various algorithm design techniques
- CO2: Understand the characteristics and optimal behaviour of hash tables
- CO3: Analyze the methodology and time efficiency of various sorting algorithms
- CO4: Apply the graph algorithms for real time problems
- CO5: Appreciate the concepts of dynamic programming

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	2									2	2	3
CO2	3	3	2									2	3	3
CO3	1	3	2									2	2	1
CO4	2	3	3									3	2	3
CO5	2	3	3									3	3	3

1 - Slight, 2 - Moderate, 3 - Substantial

1 0 4

9

9

0

9

3

Lecture: 45, Tutorial: 15, TOTAL: 60

14ITT42 JAVA PROGRAMMING

(Common to IT & CSE branches)

Pre-requisites: Basic Programming Concepts **UNIT – I**

Introduction to Java, Classes and Objects: History and Evolution of Java – Overview – Data Types - Variables - Arrays – Operators - Control Statements – Classes – Fundamentals – Declaring Objects - Assigning Object Reference Variables - Methods – Constructors - this keyword - Garbage collection - finalize method - Stack Class

UNIT – II

Reusability, Packages, Interfaces and Exception Handling: Overloading Methods - Objects as Parameters - Argument Passing - Returning Objects – Recursion - Access Control – Static – Nested and Inner Classes - Command-Line Arguments – Variable Length Arguments. Inheritance – Basics – Super keyword - Multilevel Hierarchy - Method Overriding - Dynamic Method Dispatch - Abstract Classes - final with Inheritance. Packages - Access Protection - Importing Packages – Interfaces. Exception Handling – Multiple catch Clauses- Nested try Statements - Java's Built-in Exceptions –User defined Exception – Chained exceptions.

UNIT – III

Multithreading, I/O, Applet and String Handling: Java Thread Model - Creating a Thread - Priorities – Synchronization – Inter thread Communication – Suspending - Resuming, and Stopping Threads – Multithreading. Enumerations - Wrappers – Auto boxing – Annotations. I/O Basics - Reading and Writing Console I/O - PrintWriter Class - Reading and Writing Files - Applet – Architecture – Skeleton – Display methods - Repainting – Applet tag – Passing parameters - transient and volatile modifiers. String Handling – String Class – methods – String Buffer Class – Methods – String Builder.

$\mathbf{UNIT} - \mathbf{IV}$

Generics, Collections and Event Handling: Generics – Example – Parameters - General Form- Bounded Types - Wildcard Arguments - Generic Method and Interfaces – Raw Types and Legacy Code - Generic Class Hierarchies. Collection Classes – Array List – Linked List – Hash Set and Maps. Event Handling – Mechanisms -Delegation Event Model - Event Classes - Sources of Events - Event Listener Interfaces – Mouse and Keyboard events - Adapter Classes - Inner Classes.

UNIT – V

AWT: AWT Classes - Window Fundamentals - Frame Windows - Frame Window in an Applet – Graphics –Color – Fonts - FontMetrics. AWT Controls - Layout Managers - Menu Bars and Menus -Dialog Boxes - FileDialog - Handling Events by Extending AWT Components.

TEXT BOOKS:

1. Schildt, Herbert., "Java: The Complete Reference", 9th Edition, Tata McGraw Hill Publishing Company, New Delhi, 2014.

REFERENCE BOOKS:

- 1. Buyya Rajkumar., Thamarai Selvi S. and Xingchen Chu., "Object Oriented Programming with Java Essentials and Applications", Tata McGraw Hill, 2009.
- 2. Deitel, Paul and Deitel, Harvey., "Java How to Program", 8th Edition, Eastern Economy Edition, 2009.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: outline the fundamentals of object-oriented programming in Java
- CO2: create applications using thread and exception handling
- CO3: understand I/O streams and applet programming in Java
- CO4: experiment with Java packages and collections
- CO5: construct the GUI based application with AWT controls

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2									3	3	3
CO2	1	1	2									3	2	3
CO3		2	3									3	2	3
CO4		2	3									3	2	3
CO5		2	3			1	2					3	2	3

1 – Slight, 2 – Moderate, 3 – Substantial

0 0 3

3

9

9

9

9

TOTAL: 45

14CST41 DATABASE MANAGEMENT SYSTEMS (Common to CSE & IT branches)

UNIT – I

Data Models and Relational Model: Introduction – Database System Applications – Purpose of database systems – View of data – Database Languages – Relational Databases – Database Design – Data Storage and Querying – Transaction Management – Database Architecture – Database Users and administrators - Relational Model – Structure of Relational Databases – Database Schema – Keys – Schema Diagrams – Relational Query Languages - Relational Operations-Relational Algebra

UNIT – II

SQL and Database Design: Overview – SQL data definition - Basic structure – Operations – Aggregate Functions - Nested Sub queries – Modification of the database - Intermediate SQL : Joins – views- Integrity Constraints– SQL data types and schemas – Authorization - Database Design and E-R model : E-R model- Constraints – ER diagrams – Reduction to Relational Schema – ER design issues

UNIT – III

Relational Database Design: Features of good relational designs- atomic domains and first normal form-functional dependency theory - Decomposition using functional dependencies:2NF, 3NF, BCNF – Algorithms for decomposition – Decomposition using Multivalued Dependencies-4NF, 5NF- Data Storage: RAID – Tertiary storage - File Organization – Organization of Records in Files – data dictionary storage- database buffer

$\mathbf{UNIT} - \mathbf{IV}$

Indexing and hashing: Ordered indices – B+ Tree index files – Multiple key access - Static and Dynamic Hashing – Bitmap indices – Index in SQL- Query Processing: Overview – Measures of Query Cost - Sorting – Selection, Join and Other Operations – Query optimization – Overview - Transformation of Relational Expressions – Choice of Evaluation Plan

UNIT – V

Transactions: Transaction concept – Transaction model – Storage structure – Transaction atomicity and durability – Isolation – Serializability- Concurrency control : Lock-based Protocols - Deadlock Handling – Multiple Granularity – Timestamp and Validation Based Protocols - Recovery System: Failure classification – Storage – Recovery and atomicity – Algorithm – Buffer management – Failure with loss of nonvolatile storage Lecture: 45, Tutorial: 15, TOTAL: 60

TEXT BOOKS:

1. Silberschatz. Abraham, Korth, Henry F. and Sudarshan S., "Database System Concepts", 6th Edition, McGraw Hill, New York, 2011.

REFERENCE BOOKS:

- 1. Elmasri, Ramez and Navathe, Shamkant B., "Fundamental Database Systems", 6th Edition, Pearson Education, New Delhi, 2010.
- 2. Date C J, Kannan A and Swamynathan S, "An Introduction to Database Systems", 8th Edition, Pearson Education, New Delhi, 2006.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: design a relational database using ER model
- CO2: apply SQL to create and manipulate a relational database
- CO3: survey different normalization methods in the design of relational database
- CO4: demonstrate the use of indexing techniques, query processing and recovery system
- CO5: explain the concepts of transaction processing and concurrency control methods

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2	2									2	2	3
CO2	3	3	3									2	2	3
CO3	3	3	3	3					2	2	3	3	2	3
CO4	3	3	3									3	2	2
CO5	1	1	2									1	2	2

1 - Slight, 2 - Moderate, 3 - Substantial

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

3 1 0 4

9

9

14CST42 OPERATING SYSTEMS

(Common to CSE & IT branches)

UNIT – I

Operating Systems Overview: Introduction - Computer System Organization - Computer System Architecture - Operating System Operations - System Calls - Type of System Calls - System Programs - OS Generation and System Boot.

UNIT – II

Process Management: Processes-Process Concept, Process Scheduling, Operations on Processes, Interprocess Communication. Threads- Overview, Multicore Programming, Multithreading Models: Process Synchronization - Critical Section Problem-Mutex Lock – Semaphores-Introduction to Monitors. CPU Scheduling algorithms

UNIT – III

Deadlocks: Deadlock Characterization – Methods for handling deadlocks-Deadlock Prevention and Avoidance - Deadlock detection – Recovery from Deadlocks. **Memory Management:** Main Memory-Contiguous Memory Allocation – Segmentation - Paging.

$\mathbf{UNIT} - \mathbf{IV}$

Storage Management: Virtual Memory-Demand Paging - Page Replacement - Thrashing. Mass Storage Structure – Overview - Disk Scheduling and Management. File System Storage - File Concepts - Directory and Disk Structure - File Sharing and Protection.

UNIT – V

Files: File System Implementation - File System Structure-Directory Implementation - Allocation Methods - Free Space Management. **Case Study: Linux:** History - Design Principles - Kernel Modules - Process Management - Scheduling-Memory Management. **Windows:** Histroy - Design Principles – System Components: Kernel.

TEXT BOOKS:

1. Abraham Silberschatz, Peter Baer Galvin and Greg Gagne, "Operating System Concepts", 9th Edition, John Wiley & Sons Inc., 2012.

REFERENCE BOOKS:

- 1. William Stallings, "Operating Systems Internals and Design Principles", 7th Edition, Prentice Hall, 2011.
- 2. Andrew S. Tanenbaum, "Modern Operating Systems", 2nd Edition, Addison Wesley, 2001.
- 3. Charles Crowley, "Operating Systems: A Design-Oriented Approach", Tata McGraw Hill Education, 1996.
- 4. Dhamdhere D.M., "Operating Systems: A Concept-Based Approach", 2nd Edition, Tata McGraw Hill Education, 2007.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: outline operating system and its structure
- CO2: describe various scheduling algorithms
- CO3: paraphrase concurrency, deadlock, prevention and avoidance algorithms
- CO4: illustrate the memory and file systems
- CO5: demonstrate administrative skills on Linux and windows servers

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2									2	3	3
CO2	2	3	3									2	3	2
CO3	3	3	3									2	2	2
CO4	2	3	3									2	2	3
CO5	1	3	3									2	2	2

1 - Slight, 2 - Moderate, 3 - Substantial

3 0 0 3 9

9

9

- 9
- TOTAL: 45

14CST44 SOFTWARE ENGINEERING (Common to CSE & IT branches)

UNIT – I

Process Models: Software process structure – Process models: Waterfall model, Incremental process models, Evolutionary process models, Specialized process models – Agile development: Agile process - Extreme programming - Other agile process models.

UNIT – II

Understanding Requirements and Models: Requirements engineering – Eliciting requirements, Developing use cases – Building the analysis model – Negotiating requirements – Requirements monitoring – Validating requirements – Requirements modeling: Requirements analysis – Scenario based modeling – UML models – Class based methods.

UNIT – III

Software Design: Design process – Design concepts – Design models – Architectural design: Software architecture, Architectural styles – Architectural design – Component level design: Views of components, Designing class-based components, Conducting component level design – Designing traditional components – User interface design: User interface analysis and design, Interface analysis, Interface design steps.

$\mathbf{UNIT} - \mathbf{IV}$

Software Testing Fundamentals: Software testing strategies: Strategic approach – Issues – Test strategies for conventional and Object Oriented software –Validation and system testing – Debugging – Testing conventional applications: White box testing – Basis path testing – Control structure testing – Black box testing.

UNIT – V

Software Project Management: Software Configuration Management: The SCM repository – The SCM process – Project management concepts – Process and project metrics: Software measurement – Metrics for software quality – Estimation for software projects: Decomposition techniques and empirical estimation models – Project scheduling.

TEXT BOOKS:

1. Roger S. Pressman, Bruce R. Maxim, "Software Engineering: A Practitioner's Approach", 7th Edition, McGraw-Hill, New York, 2014.

REFERENCE BOOKS:

- 1. Jalote Pankaj, "An Integrated Approach to Software Engineering", 3rd Edition, Narosa Publishing House, New Delhi, 2008.
- 2. Sommerville I., "Software Engineering", 9th Edition, Addison Wesley, New York, 2010.
- 3. SWEBOK, "Guide to the Software Engineering Body of Knowledge", A project of the IEEE Computer Society Professional Practices Committee, 2004.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: compare various software development models
- CO2: identify the tasks in requirement engineering and describe several analysis models
- CO3: summarize different methods for the design of a software system
- CO4: illustrate various software testing methods
- CO5: interpret software project management and quality metrics

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3			2			2				2	2
CO2		3	3			3			3				2	2
CO3		2	3			3	3		2			2	2	3
CO4		2	3			2			3			2	1	1
CO5		3	3			3	3		3			2	1	3

1 - Slight, 2 - Moderate, 3 - Substantial

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

3 0 0 3 9

9

TOTAL: 45

9

Q

14ITL41 JAVA PROGRAMMING LABORATORY

(Common to IT & CSE branches)

LIST OF EXPERIMENTS / EXERCISES:

- 1. Simple java programs using operators, arrays and control statements
- 2. Develop a stack data structure using class and object
- 3. Program to demonstrate inheritance & polymorphism
- 4. Develop an application using interfaces and packages
- 5. Program to illustrate exception handling in java and creation of user defined exception
- 6. Program to illustrate multithreads and Inter thread Communication
- 7. Program to copy the contents of one file into another file.
- 8. Develop and configure a simple banner applet
- 9. Program to demonstrate the features of generics types
- 10. Program to demonstrate the use of ArrayList, LinkedList, HashSet and Map classes.
- 11. Program to capture the various keyboard and mouse events.
- 12. Develop a scientific calculator using event-driven programming paradigm of Java
- 13. Develop a simple text editor with basic file and edit functionalities

TOTAL : 45

0

0

3

1

REFERENCES / MANUALS / SOFTWARE:

- 1. Operating System : Linux
- 2. Software : JDK8

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: design Java program using object oriented concepts
- CO2: develop application using package, multithreading concepts and generics
- CO3: create applets and event driven programming applications

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		3	2									2	2
CO2	1		3	2									2	3
CO3			3	3	1	1						3	2	3

1 – Slight, 2 – Moderate, 3 – Substantial

14CSL41 DATABASE MANAGEMENT SYSTEMS LABORATORY

(Common to CSE & IT branches)

LIST OF EXPERIMENTS / EXERCISES:

- 1. Data definition language, commands, integrity constraints
- 2. Data manipulation language, Data control language commands and TCL commands
- 3. Nested queries and join operations
- 4. Views and index
- 5. PL/SQL statements
- 6. Cursors
- 7. Triggers
- 8. Procedures and functions
- 9. Embedded SQL
- 10. Design and implementation of banking system

11. Mini project:

(Application Development using Oracle/ SQL SERVER / MYSQL)

- Inventory Control System
- Hospital Management System
- Railway Reservation System
- Web Based User Identification System
- Hotel Management System
- Student Information System
- Library Information System

REFERENCES / MANUALS / SOFTWARE:

- 1. Front End : Microsoft Visual Studio 6.0, Microsoft .NET Framework SDK v2.0, Java
- 2. Back End : ORACLE / SQL SERVER / MYSQL

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: develop PL/SQL commands to create and manipulate databases
- CO2: create queries using concepts of embedded query languages
- CO3: solve real world problems using database concepts

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3								1	2	2
CO2		3	3	3								1	2	2
CO3		3	3	3		2	2					1	3	3

1 - Slight, 2 - Moderate, 3 - Substantial

TOTAL: 45

0 0 3 1

14CSL42 OPERATING SYSTEMS LABORATORY

(Common to CSE & IT branches)

LIST OF EXPERIMENTS / EXERCISES:

- 1. Shell programming command syntax write simple functions basic tests.
- 2. Shell programming loops- patterns- expansions- substitutions.
- 3. Write programs using the following system calls of UNIX operating system: fork, exec, getpid, exit, wait, close, stat, opendir, readdir
- 4. Write programs using the I/O system calls of UNIX operating system (open, read, write, close, etc)
- 5. Developing application using inter process communication (using pipes or message queues)
- 6. Implement the producer consumer problem using semaphores (using UNIX system calls).
- 7. Implement the following CPU scheduling algorithms
- a) Round Robin b) SJF c) FCFS d) Priority8. Implement any two page replacement algorithms
 - a) FIFO b) LRU c) LFU d) optimal
- 9. Linux OS installation and installing software from source code as well as using binary package
- 10. Installing and configuring printers and Samba configuration file sharing
- 11. FTP Configuration, web server configuration and firewall configuration
- 12. Network configuration

REFERENCES / MANUALS / SOFTWARE:

1. GCC Compiler/Linux

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: compare the performance of various CPU scheduling algorithms
- CO2: analyze the performance of the various page replacement algorithms
- CO3: create processes and implement IPC usage and implement the operating system calls
- CO4: develop applications using inter process communication and semaphores
- CO5: demonstrate administrative skills on linux servers, FTP server and firewalls

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	3	3								2	3	2
CO2	3	3	3	3								2	3	2
CO3	3	3	3	3								2	2	3
CO4	3	3	3	3								2	2	3
CO5	2	3	3	3								2	3	2

1 - Slight, 2 - Moderate, 3 - Substantial

TOTAL: 45

14MAT51 PROBABILITY AND QUEUING THEORY

(Common to CSE and IT branches)

UNIT – I

Random Variables: Discrete and Continuous random variables - Probability Mass and Probability density functions -Mathematical expectation and Variance - Moments - Moment generating functions - Functions of a random variable.

UNIT – II

Standard Probability Distributions: Discrete Distributions: Binomial distribution - Poisson distribution - Geometric distribution - Continuous Distributions: Uniform distribution - Exponential distribution - Gamma distribution - Normal distribution.

UNIT – III

Two Dimensional Random Variables: Joint probability distributions - Marginal and conditional distributions -Covariance - Correlation and regression - Transformation of random variables.

UNIT - IV

Queuing Theory: Characteristics of a queueing system – Kendall's notation – Queuing model I (Infinite capacity single server Poisson queue model) (M/M/1): $(\infty/FIFO)$ – Little's formulae – Queuing model II (Infinite capacity multiple server Poisson queue model (M/M/C): (∞ /FIFO) – Queuing model III (Finite capacity single server Poisson queue model) (M/M/1): (N/FIFO) – Queueing model IV (Finite capacity multiple server Poisson model) (M/M/C) : (N/FIFO).

UNIT – V

Non-Markovian Queues and Queue Networks : M/G/1 queue – Pollaczek-Khintchine formula – Series queues – Open and Closed queuing networks.

TEXT BOOKS:

1. Veerarajan T., "Probability, Statistics and Random Processes", Reprint Edition, Tata McGraw Hill Publishing Company, New Delhi, 2014.

REFERENCE BOOKS:

- Allen A.O., "Probability, Statistics and Queuing Theory", 2nd Edition, Academic Press, New Delhi, 1990. 1.
- K.S., "Probability and Statistics with Reliability, Trivedi Queueing 2 and Computer Science Applications", 2nd Edition, John Wiley and Sons, 2002.
- Roy D. Yates and David J. Goodman, "Probability and Stochastic Processes A friendly Introduction for Electrical 3. and Computer Engineers", 2nd Edition, John Wiley & Sons, 2012. Gross D. and Harris C.M., "Fundamentals of Queuing Theory", 2nd Edition, John Wiley and Sons, New York, 2008.
- 4.
- Papoulis A., "Probability, Random Variables and Stochastic Processes", 4th Edition, McGraw Hill, New Delhi, 2010. 5.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: classify random variables and apply suitably in practical problems
- analyze and interpret practical situations and fit a suitable probability distribution CO2:
- apply effectively the concepts of two dimensional random variables CO3:
- correlate the data which appear in engineering problems CO4:
- CO5: identify the real time queue in computer networks and take decision accordingly

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	1								1	1	
CO2	3	3	2	1								1	2	
CO3	3	3	1										1	
CO4	3	3										1	1	
CO5	3	3	2	1								1	3	

1 – Slight, 2 – Moderate, 3 – Substantial

3 1 Q

9

9

9

Lecture: 45, Tutorial: 15, TOTAL: 60

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

14ITT51 COMPUTER COMMUNICATION NETWORKS

(Common to IT & CSE branches)

Pre-Requisites: Communication Engineering

UNIT – I

Introduction to Data Communications and Physical Layer: Components - Data representations – Data flow – Networks – Criteria- Physical structures- Network Types. Network Models: Protocol layering -TCP/IP Protocol suite - The OSI Model. **Physical Layer:** Digital transmission: Digital-to-digital conversion, Transmission modes. Transmission media: Guided – Unguided media.

UNIT – II

Data-link Layer: Link layer addressing – ARP- RARP - Error detection and correction: Block coding – Cyclic codes – Checksum –Forward Error Correction. Framing - Flow and Error control - Data-link layer protocols: Simple protocol, Stop-wait, Piggybacking - HDLC - Point-to-point protocol. MAC protocols: Random Access - Controlled access - Channelization – Wired LAN: Standard Ethernet - Connecting devices.

UNIT – III

Network Layer: Network layer services – Packet switching – Network layer performance - IPV4 addresses – Internet Protocol (IP) - ICMPv4. Unicast Routing: Routing Algorithms: Distance-Vector and Link-state routing – Routing Protocols: RIP and OSPF. Multicast Routing: Introduction- Basics – Intradomain Multicast Protocols: DVMRP, MOSPF-IGMP.

$\mathbf{UNIT} - \mathbf{IV}$

IPv6 and Transport Layer: IPV6 addressing, IPV6 protocol. **Transport Layer:** Introduction – Transport layer protocols: Simple protocol, Stop-wait protocol, Go-Back-N and Selective repeat protocols – UDP – TCP – SCTP.

UNIT – V

QoS and Application Layer: Quality of Service: Data Flow Characteristics, Techniques to improve QoS – Integrated and Differentiated Services. **Application Layer:** WWW and HTTP- FTP - Electronic mail –Telnet - SSH, DNS. Network Management: SNMP.

TEXT BOOKS:

1. Forouzan, Behrouz A., "Data Communication and Networking", 5th Edition, Tata McGraw Hill, New Delhi, 2013. **REFERENCE BOOKS:**

- 1. Kurose James F. and Ross Keith W., "Computer Networking: A Top-Down Approach", 6th Edition, Pearson Education, New Delhi, 2012.
- 2. Tanenbaum, Andrew S. and David Wetherall, "Computer Networks", 5th Edition, Prentice Hall of India, New Delhi, 2010.
- 3. Stallings, William, "Data and Computer Communication", 10th Edition, Pearson Education, New Delhi, 2013.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: explain how communication works in data networks and the internet
- CO2: recognize the different internetworking devices and their functions
- CO3: analyze the services, roles and features of the various layers of networks
- CO4: design, calculate, and apply subnet masks and addresses to fulfil networking requirements
- CO5: differentiate various types of network configurations, components and protocols and applying them to meet the changing and challenging networking needs of organizations

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	2									1	3	2
CO2	2	3	3			2	2					3	2	2
CO3	2	3	3			2	2					2	2	2
CO4	3	3	3			3						3	3	2
CO5	3	3	3			3						3	3	2
1 – Slight,	2 – Mod	derate,	3 – Sub	stantial										

Mapping of COs with POs and PSOs

 $\mathbf{x} \mathbf{S} \mathbf{y} \mathbf{H} \mathbf{z} \mathbf{h} \mathbf{x} = \mathbf{P} \mathbf{z} \mathbf{0} \mathbf{1} \mathbf{z}$

3 0 0 3

9

9

9

9

9

TOTAL: 45

τοται ·

14ITT52 WEB TECHNOLOGY

(Common to IT & CSE branches)

	3	0	0	3
Pre-requisites: Programming Concepts UNIT – I	5	Ū	U	9
HTML: Introduction to Computers and the Internet –HTML 5 – Basic Tags – Input Tags- Pag Cascading Style Sheet –Part I	ge struc	ctured	eleme	nt -
UNIT – II Client Side Scripting: Introduction to Java Script - Control Statements I – Control statements II-	Functi	ons –	Arrays	9
UNIT – III Java Script Objects: Objects - Document Object Model : Objects and Collections – Events – Even	it Han	dling		9
UNIT – IV Web Server: Introduction – HTTP Transaction – Multi Tier Application Architecture – Accessing MySQL – PHP Installation – Microsoft IIS Server –AJAX- XMLHttpRequest	Web S	erver-	Apach	9 he –
UNIT – V Server Side Scripting: PHP – Introduction – Operators – Arrays – Strings – Regular Expression Database Connectivity – Session Tracking	ıs – Fo	rm Pro	ocessin	9 ng –
		Т	OTAL	: 45
TEXT BOOKS:			th —	
1. Paul Deitel, Harvey M.Deitel and Abbey Deitel, "Internet and World Wide Web - How To Prentice Hall, 2011.	Progra	am", 5	" Edit	10n,
REFERENCE BOOKS: 1. Xavier C., "World Wide Web Design with HTML", 2 nd Edition, Tata McGraw Hill, New De	11.: 20	10		
 Xavier C., "World Wide Web Design with HTML", 2nd Edition, Tata McGraw Hill, New De Godbole A.S. and Kahate A., "Web Technologies", 3rd Edition, Tata McGraw-Hill, New Dell 				
 Coubbe A.S. and Kanate A., Web reclinitiogres , 5 Edition, Fata McGraw-Thin, New Den Ladd Eric and O' Donnel Jim, "Using HTML 4, XML and Java", 1st Edition, Prentice Ha 2000. 			lew De	elhi,
4. www.w3schools.com				
COURSE OUTCOMES On completion of the course the students will be able to				
CO1: design static web pages using HTML				
CO2: develop interactive web pages using Java script				
CO3: validate the HTML form data using Java script				

- CO4: optimize the performance of web page loading using AJAX technology
- CO5: develop web application using PHP with database connectivity and session tracking

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3			1	1						2	3
CO2		3	3		2	2	2			2		2	2	3
CO3		3	3		1							1	2	3
CO4		3	3		2	1	2					1	2	3
CO5		2	3		2	2	1			1		2	2	3

Mapping of COs with POs and PSOs

1 - Slight, 2 - Moderate, 3 - Substantial

14CST51 OBJECT ORIENTED SYSTEM DESIGN

(Common to CSE & IT branches)

UNIT - I

Introduction: An overview of object oriented systems development - Object basics - Object oriented systems development life cycle- Software development process - Building high-quality software - Rumbaugh methodology Booch methodology - Jacobson methodology - Patterns - Frameworks - Unified Approach

UNIT – II

UML: Introduction - Unified Modeling Language - Static model - Dynamic model - UML diagrams- UML class diagram - Use case diagram - UML dynamic modeling - UML interaction diagrams -UML state chart diagram - UML activity diagram - Implementation Diagrams -component diagram -Deployment diagram - UML extensibility - Use-case model-Developing effective documentation

UNIT-III

Object Oriented Analysis: Noun Phrase Approach-Common class patterns approach-Use case driven Approach-Classes-Responsibilities- Collaborators- Naming classes- Associations-Super-Sub Class relations-A-part of Relationships -Aggregations-Class Responsibility: Identifying Attributes and Methods-Defining Attributes by analysing Use cases and other UML diagrams-Object Responsibilities-Case study

UNIT-IV

Object Oriented Design: Object oriented design process - Object oriented design axioms-Corollaries- Coupling -Cohesion -Design Patterns- Designing classes - UML object constraint language-Class visibility - Refining attributes -Designing methods and protocols-Designing Methods for Bank Objects-Packages and Managing Classes

UNIT – V

View Layer: Designing view layer classes - Macro level process - Micro level process-Purpose of view layer interface-Prototyping the user interface-case study: Designing user interface for Bank ATM. System Usability Measures: Usability testing -User Satisfaction testing-User Satisfaction test template -Case study : Developing usability test plans and test cases for Bank ATM

TEXT BOOKS:

Ali Bahrami, "Object Oriented Systems Development", 1st Edition, Tata McGraw-Hill, New Delhi, 2008. 1

REFERENCE BOOKS:

- 1.
- 2.
- 3.
- Russ Miles and Kim Hamiliton, "Learning UML 2.0", 1st Edition, O'reilly, 2006. John Deacon, "Object Oriented Analysis and Design", 1st Edition, Pearson Education, 2009. Craig Larman, "Object Oriented Analysis and Design", 3rd Edition, Prentice Hall of India, 2005. James Rumbaugh, Ivar Jacobson and Grady Booch, "The Unified Modeling Language Reference Manual", 2nd 4. Edition, Addison Wesley, 2005.
- Carol Britton, Jill Doake, "A Student Guide to Object-Oriented Development", Elsevier Publications, 2005. 5.

Course Outcomes:

On completion of the course the students will be able to

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: apply the different techniques to get the system requirements and present it in standard format
- CO2: utilize software objects to build systems that are more robust
- analyse and design using the Object-Oriented Analysis and Design (OOAD) concepts for developing Object CO3: **Oriented Projects**
- identify objects, relationships, services and attributes and construct UML diagrams using appropriate CO4: notations
- apply appropriate design patterns CO5:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3		3	2							2		1
CO2		3	3	3	2							2		2
CO3		3	3	3	3	2	2					2	3	2
CO4		3	3		2							2	3	2
CO5			3		3		2					2	3	2

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

3

0

9

9

9

9

TOTAL: 45

3

0

8086 Microprocessor : Architecture of 8086 - The execution unit - Bus interface unit- Addressing modes - Instruction set of 8086: Data transfer instructions - Branch Instructions - Logical instructions - Arithmetic instructions - Shift and rotate instructions - Simple Assembly Language Programs of 8086

14ITT53 MICROPROCESSOR AND EMBEDDED SYSTEMS

UNIT - II

UNIT – I

8051 Microcontroller: 8051 Microcontroller hardware block diagram - Addressing modes -Instruction set: Arithmetic and Logic Instructions- Jump, Loop and Call Instructions – Simple Assembly Language Programs of 8051

UNIT - III

8051 Interfacing with I/O and Memory: Register banks and Stack - I/O port programming - Interfacing to external memory- Timer and counter programming - Serial Data Communication - Interrupt programming

UNIT – IV

8051 Interfacing with Peripherals: LED - Seven segment display - Switch interfacing - LCD-ADC0809 with LM35 sensor - Stepper motor - Matrix keypad

UNIT – V

8051 Programming in C: Data types and Time delays in C- I/O Programming - Logic operations - Data Conversion programs - Accessing Code ROM space in 8051 C - Data Serialization using 8051

TEXT BOOKS:

Muhammad Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay and Lyla B. Das, "Microprocessors and 1. Microcontrollers", 1st Edition, Pearson Education Asia, New Delhi, 2013.

REFERENCE BOOKS:

- Ray K. and Bhurchandi K.M., "Advanced Microprocessors and Peripherals: Architecture, Programming and 1 Interface", 3rd Edition, Tata McGraw Hill Publishing Company, New Delhi, 2012.
- Patel, "The 8051 Microcontroller Based Embedded Systems", 1st Edition, Tata McGraw Hill Publishing Company, 2. New Delhi, 2014.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Comprehend the concepts of 16-bit microprocessor
- CO2: Program with microprocessor and microcontroller
- CO3: Interface peripheral devices with microcontroller
- CO4: Design microcontroller based projects
- CO5: Design embedded system applications

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		3										3	3
CO2	2		3										3	3
CO3	2		3										3	3
CO4	2		3		3						3		3	3
CO5	2		3		3						3		3	3

1 – Slight, 2 – Moderate, 3 – Substantial

A A 3 9

3

9

9

9

9

TOTAL: 45

14CSL51 CASE TOOLS LABORATORY

(Common to CSE & IT branches)

Prepare the following for any two experiments listed below:

- 1. Define the problem statement and develop an IEEE standard SRS document.
- 2. Identify the business activities and develop business use case model.
- 3. Identify Use Cases and develop Use Case model (System use case diagram and UML Activity
- diagram). 4. Develop MVC (architectural) pattern and design pattern.
- 5. Identity the classes (boundary, controller and entity classes) with UML Class diagram.
- 6. Using the identified scenarios find the interaction between objects and represent them using UML Interaction diagrams.
- 7. Draw the State Chart diagram.
- Bevelop Interface pattern.
 Identify the User Interface and domain objects. Draw the UML package diagram.
- 10. Implement the User Interface (presentation) layer using thin client with HTML/Java/JSP/Servlet
- 11. Implement the Business layer (domain object) using JDBC adapter / EJB.
- 12. Implement the Data layer using JDBC mapper.
- 13. Draw Component and Deployment diagrams.
- 14. Test the implementation.

LIST OF EXPERIMENTS /EXERCISES:

- 1. Passport Automation system
- 2. Library Management system
- 3. Exam Registration
- 4. Stock Maintenance system
- 5. Online Course Registration system
- 6. E-ticketing
- 7. Insurance management system
- 8. Credit card processing
- 9. Expert system
- 10. Recruitment system
- 11. Bank Management system
- 12. Real Time Scheduler

REFERENCES / MANUALS / SOFTWARE:

- 1. IBM Rational Suite
- 2. Java / Eclipse IDE/.Net Framework/Visual Studio Package

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: design and implement projects using OO concepts
- use the UML analysis and design diagrams in various applications CO2:
- CO3: apply appropriate design patterns
- CO4: implement a software from design

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3	3	3							2	2	1
CO2		2	3	3	3							2	2	1
CO3		2	3	3	3							2		3
CO4		2	3	3	3							2		3

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL: 45

0

0

3

14ITL51 MICROPROCESSOR AND EMBEDDED SYSTEMS LABORATORY

0 0 3 1 LIST OF EXPERIMENTS: 1. Addition / Subtraction / Multiplication / Division operations using 8086 2. Maximum and Minimum operations using 8086 Sorting and searching operations using 8086 3. 4. Hex./BCD code conversion using 8086 microprocessor Matrix multiplication using 8086 microprocessor 5. Addition / Subtraction / Multiplication / Division using 8051 microcontroller 6. Interfacing of LED with 8051 microcontroller 7. Stepper Motor interfacing with 8051 microcontroller 8. 9. LCD interfacing with 8051 microcontroller 10. Interfacing with Relay and Switch 11. Mini project - Simple Embedded System Application

REFERENCES / MANUALS / SOFTWARE:

- 1. 8086 Simulator
- 2. 8051 Simulator

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Write a program for various applications using 16 bit processor and 8 bit controller
- CO2: Interface various peripherals with 8 bit microcontroller
- CO3: Design a simple embedded system application

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		3										3	3
CO2	2		3										3	3
CO3	2		3		3						3		3	3

Mapping of COs with POs and PSOs

1 - Slight, 2 - Moderate, 3 - Substantial

TOTAL: 45

14ITL52 WEB TECHNOLOGY LABORATORY

(Common to IT & CSE branches)

LIST OF EXPERIMENTS:

- 1. Design a Web Page using HTML Tags and host it in Web Server
- 2. Create a XHTML document to implement types of CSS
- 3. Design a web page with menu layout. Apply the various formatting using CSS
- 4. Design a registration page to create email-id and validate the information in the web page using Java Script
- 5. Write a JavaScript program to use Objects and Collections
- 6. Design a web page to create simple interactive CGPA calculator
- 7. Create a website to load the content dynamically using AJAX
- 8. Create a website for student mark maintenance system using PHP and MySQL
- 9. Create a website to illustrate Session Tracking in PHP
- 10. Develop and deploy online reservation system using Java script, CSS, AJAX, PHP, MySQL with Session Tracking

TOTAL : 45

0

0 3 1

REFERENCES / MANUALS / SOFTWARE:

1. PHP, MySQL, Apache Web Server, IIS and Browser

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: design web pages using HTML and Java Script and deploy it in a web server
- CO2: validate the HTML form data using Java script
- CO3: develop and deploy web application with database connectivity

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		1	2	3	3							1	2	3
CO2		1	2	3	3							2	2	3
CO3		1	3	3	3							2	2	3

1 – Slight, 2 – Moderate, 3 – Substantial

14GET61 ECONOMICS AND MANAGEMENT FOR ENGINEERS

(Common to all Engineering and Technology branches)

UNIT – I

Economics - Basics Concepts and Principles - Demand and Supply - Law of demand and Supply - Determinants - Market Equilibrium - Circular Flow of Economic activities and Income.

UNIT – II

National Income and its measurement techniques. Inflation - Causes of Inflation - Controlling Inflation - Business Cycle. Forms of business - Management Functions: Planning, Organizing, Staffing, Leading and Controlling - Managerial Skills -Levels of Management - Roles of manager.

UNIT – III

Marketing - Core Concepts of Marketing - Four P's of Marketing - New product development - Product Life Cycle - Pricing Strategies and Decisions.

UNIT – IV

Operations Management - Resources - Types of Production system - Site selection, Plant Layout, Steps in Production Planning and Control - Inventory - EOQ Determination.

UNIT – V

Accounting Principles - Financial Statements and its uses - Depreciation: Straight Line and Diminishing Balance Method -Break Even Analysis - Capital Budgeting: Meaning - Types of decisions - Methods (Theory).

TEXT BOOK:

"Economics and Management for Engineers", Complied by Department of Management Studies, Kongu Engineering 1. College, McGraw-Hill Education, India, 2013.

REFERENCE BOOKS:

- Geetika, Piyali Ghosh and Purba Roy Choudhury, "Managerial Economics", 1st Edition, Tata McGraw-Hill, New 1. Delhi, 2008.
- Jeff Madura, "Fundamentals of Business", Cengage Learning Inc., India, 2007. 2.
- 3.
- Stanley L. Brue and Campbell R. Mcconnell, "Essentials of Economics", Tata McGraw-Hill, New Delhi, 2007. Jain S.P., Narang K.L. and Simi Agrawal, "Accounting for Management", 1st Edition, Tata McGraw-Hill, New Delhi, 4. 2009.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: estimate market equilibrium and interpret national income calculation and inflation issues
- CO2: categorize the forms of business and analyse the functions of management
- CO3: appraise marketing management decisions
- apply appropriate operation management concept in business situations CO4:
- interpret financial and accounting statements CO5:

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	1	2			3		2	2	3	2	2	1	2
CO2		1	2			2	2	2	2	3	2	2	1	2
CO3	1	2	1			2		2	2	3	2	2	1	3
CO4	1	2	1			2		2	2	3	2	2	2	3
CO5	1	2				2		2	2	3	2	2	3	3

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

3 0 0 Q

3

9

9

TOTAL : 45

14ITT61 NETWORK PROGRAMMING AND MANAGEMENT (Common to IT & CSE branches)

Pre-requisites: Computer Communication Networks UNIT – I

Introduction to TCP and TCP Sockets: Transmission Control Protocol- TCP Connection Establishment and Termination – Port Numbers – TCP Port numbers and Concurrent servers – Buffer Sizes and Limitations – Socket address Structures - Value-Result Arguments - Byte ordering functions - Byte Manipulation Functions - Address conversion functions - Elementary TCP Sockets

UNIT – II

Application Development and I/O Multiplexing: TCP Echo Server – TCP Echo Client – Normal Startup and Termination - POSIX Signal handling – SIGCHLD Signals – wait and waitpid functions – Connection abort before accept returns – termination of server – SIGPIPE signal – crashing, shutdown and rebooting of a server host –I/O Multiplexing: I/O Models - select and str-cli function - Batch Input and Buffering - shutdown function - TCP echo Server with multiplexing - poll function

UNIT – III

Socket Options and Elementary UDP Sockets: Socket options: getsocket and setsocket functions – Checking socket options - Socket states - generic socket options - IPV4 socket options - IPV6 Socket options - TCP socket options -Elementary UDP sockets: recvfrom() and sendto() functions - UDP echo Server - UDP echo Client - Lost datagrams verifying received response and server not running

UNIT-IV

Name and Address Conversions and Raw Sockets: Introduction - Domain Name System - gethostbynamegethostbyaddr – getservbyname – getservbyport – getaddrinfo - gai_strerror - freeaddrinfo- getaddrinfo for IPv6 – getaddrinfo: Examples - host_serv - tcp_connect - tcp_listen - udp_client - udp_connect - udp_server – getnameinfo - Reentrant Functions - gethostbyname_r and gethostbyaddr_r functions -Raw socket creation - raw socket output - raw socket input – ping program – trace route program.

UNIT – V

Network Management: Network Management Requirements - Network Management systems - Network Monitoring : Architecture - Performance Monitoring - Fault Monitoring - Accounting Monitoring, Network Control : Configuration Control - Security Control - SNMP Network Management Concepts : Background and Basic Concepts

TEXT BOOKS:

- Richard Stevens W., Bill Fenner and Andrew M. Rudoff, "Unix Network Programming : The Sockets Networking API", Volume I, 3rd Edition, Addison Wesley, 2014. 1.
- William Stallings, "SNMP, SNMPv2, SNMPv3 and RMON 1 and 2", 3rd Edition, PHI/Pearson Education, 2009. 2.

REFERENCE BOOKS:

- Comer D.E., "Internetworking with TCP/IP Volume III", (BSD Sockets Version), 2nd Edition, Prentice Hall 1. of India, New Delhi, 2003.
- "Network Practice", 1^{st} 2. Subramaniam, Management: Principles and Edition. Addison Mani Wesley, 2001.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: describe and apply the TCP and UDP sockets API
- CO2: design and develop TCP and UDP client and server applications
- CO3: explain how communication works in data networks and the internet
- CO4: develop new network-aware and client-server applications
- CO5: outline the major issues in network management

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3	2	2		2					2	2	2
CO2			3	2	2		2					2	2	2
CO3			3	2	2		2					2	3	3
CO4			3	2	2		2					2	2	2
CO5			3	2	2		2					2	3	2

1 – Slight, 2 – Moderate, 3 – Substantial

Q

9

9

TOTAL : 45

3

9

9

3

0

14CST61 COMPILER DESIGN

(Common to CSE & IT branches)

Pre-requisites: Basic knowledge in Finite Automata, Regular Expression and Context Free Grammar(CFG) UNIT – I

Introduction and Lexical Analysis: Language processors – Structure of a compiler – Role of lexical analyzer – Input buffering – Specification of tokens – Recognition of tokens – Lexical analyzer generator (Lex) – Finite Automata – Regular Expression to Automata.

UNIT – II

Parsing: Introduction – Context Free Grammars - Writing a grammar – Top down parsing - Bottom up parsing – Introduction to LR Parsing: Simple LR – More powerful LR Parsers - Parser generators (YACC).

UNIT – III

Intermediate Code Generation: Variants of syntax trees – Three address code – Types and declarations – Translation of expressions – Control flow – Backpatching – Switch statements- Intermediated code for procedures.

UNIT – IV

Code Optimization and Generation: Issues in the design of code generator – The target language – Basic blocks and flow graphs – Optimization of basic blocks – Loops in flow graphs – A simple code generator – Peephole optimization – Principal sources of optimization – Introduction to data-flow analysis.

UNIT – V

Run-time Environments: Storage organization – Stack allocation of space – Addresses in the target code – Access to non-local data on the stack – Heap management – Introduction to garbage collection.

TEXT BOOKS:

1. Aho Alfred, Sethi Ravi and Ullman Jeffrey D., "Compilers: Principles, Techniques and Tools", 2nd Edition, Pearson Education Pvt. Ltd., Singapore, 2008.

REFERENCE BOOKS:

- 1. Srikant Y.N. and Priti Shankar, "The Compiler Design Handbook: Optimizations and Machine Code Generation", 2nd Edition, CRC Press, 2007.
- 2. Keith Cooper and Linda Torczon, "Engineering a Compiler", 2nd Edition, Morgan Kauffman Publishers, 2004.
- 3. Alexander Meduna, "Elements of Compiler Design", Auerbach Publications, 2008.
- 4. Holub Allen I., "Compiler Design in C", Prentice Hall of India, New Delhi, 2003.

Course Outcomes:

On completion of the course the students will be able to

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: apply the LEX tool and YACC tool to develop a scanner and parser
- CO2: exploit regular expressions and context free grammars to construct tokens and parse trees
- CO3: develop a system for generating a intermediate language of a compiler
- CO4: optimize the code by applying several techniques to improve the performance of a program in terms of speed and space
- CO5: compare the features of modern programming languages for generation of target language

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	2		2							2	2	2
CO2	1	3	2									2	2	2
CO3	1	2	2									2	2	3
CO4	1	2	2									2	2	2
CO5		2										2	2	

1 – Slight, 2 – Moderate, 3 – Substantial

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

9

Lecture: 45, Tutorial:15, TOTAL: 60

1

0

4

9

9

9

9

14ITT62 INFORMATION CODING TECHNIQUES

UNIT – I

Information Entropy Fundamentals: Uncertainty, Information and Entropy – Source coding Theorem – Data Compaction – Discrete Memory less channels – Mutual Information - Channel Capacity – Channel Coding Theorem.

UNIT – II

Error Control Coding: Linear Block codes: Syndrome - Minimum Distance Considerations – Syndrome Decoding - Cyclic codes – Generator Polynomial – Parity Check Polynomial – Generator and Parity-Check Matrices -Encoder for Cyclic codes – Calculation of the Syndrome – Convolutional Codes: Code Tree, Trellis and State Diagram.

UNIT – III

Text and Image Compression: Compression Principles – Text compression: Static Huffman Coding - Dynamic Huffman coding – Arithmetic coding – LZW coding - Image Compression: Graphics Interchange format – Tagged Image File Format – Digitized documents – Digitized Pictures - JPEG Standards.

$\mathbf{UNIT} - \mathbf{IV}$

Audio Compression: Differential Pulse code Modulation – Adaptive Differential Pulse Code Modulation – Adaptive predictive coding – Linear Predictive coding – Code-excited LPC – Perceptual coding- MPEG audio coders – Dolby audio coders.

UNIT – V

Video Compression: Principles: Frame types-Motion estimation and compensation-Implementation issues – H.261-H.263-MPEG-MPEG-1 - MPEG-2 - MPEG-3 - MPEG-4 video standards.

TEXT BOOKS:

- 1. Simon Haykins, "Communication Systems", 4th Edition, John Wiley and Sons, 2012.
- 2. Fred Halsall, "Multimedia Communications, Applications, Networks, Protocols and Standards", 4th Edition, Pearson Education, 2009.

REFERENCE BOOKS:

- 1. Ranjan Bose, "Information Theory, Coding and Cryptography", 2nd Edition, Tata McGraw Hill, 2008.
- 2. Mark S. Drew, Ze-Nian Li, "Fundamentals of Multimedia", 1st Edition, Pearson Education, 2003.
- 3. Mark Nelson, "Data Compression Book", 2nd Edition, BPB Publication, 2004.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Understand the fundamentals of coding theorems.
- CO2: Acquire a complete understanding of error-control coding.
- CO3: Comprehend the knowledge of compression and decompression techniques for text and image.
- CO4: Attain the knowledge of audio compression.
- CO5: Obtain familiarity in video compression.

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3											2	2
CO2	3	2		3									2	1
CO3	3		3	3									3	2
CO4	3	2	2	2									2	2
CO5	3	2	3	3									2	2

1 - Slight, 2 - Moderate, 3 - Substantial

0 0 3

Q

9

9

3

9

TOTAL: 45

14ITL61 NETWORK PROGRAMMING LABORATORY

(Common to IT & CSE branches)

LIST OF EXPERIMENTS /EXERCISES:

- 1. Create socket and display socket ID
- 2. Implementation of Address Conversion Routines
- 3. Develop a Client Server application for chat using TCP
- 4. Implementation of UDP Client Server Communication using Bind, SendTo, and RecvFrom System Calls
- 5. Design TCP Client and Server application to transfer file
- 6. Demonstration to generate SIGPIPE Error with Socket
- 7. Demonstration to restart server by capturing SIGHUP signal
- 8. Develop a code for ping and trace route programs
- 9. Performance analysis of TCP/UDP using simulation tool
- 10. Simulation of LAN(CSMA/CD) using simulation tool
- 11. Simulation of Distance vector / Link State routing protocol
- 12. Simulation and Performance analysis of 802.11 with AODV,DSR, DSDV routing protocols using simulation tool

TOTAL : 45

0

0

3

1

REFERENCES / MANUALS / SOFTWARE:

- 1. Linux Operating System
- 2. C Compiler, NS2, awk, Xgraph

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: develop socket API based program and implement client-server application using TCP and UDP sockets
- CO2: identify different signal handling functions and use them
- CO3: use simulation tools to understand wired and wireless functionalities

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	2	3									3	3
CO2	2	2		3	2								3	2
CO3	2	3	2	3	3								2	3
CO4														
CO5														

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

14CSL61 COMPILER DESIGN LABORATORY

(Common to CSE & IT branches)

LIST OF EXPERIMENTS /EXERCISES:

- 1. Implement the concept of Lexical analysis using LEX.
- 2. Compute ε-closure and simulate an NFA.
- 3. Implement an algorithm to convert ε -NFA into DFA.
- 4. Construct a predictive parsing table and simulate it.
- 5. Evaluate an arithmetic expressions using YACC.
- 6. Translate arithmetic expressions into an equivalent three-address code.
- 7. Optimization of three address codes using any two principle sources of optimization techniques.
- 8. Generate an equivalent target code (Assembly Language) from optimized three address codes.
- 9. Study of Low Level Virtual Machine (LLVM) compiler.
- 10. Case Study

TOTAL: 45

0

REFERENCES / MANUALS / SOFTWARE:

- 1. Linux /Windows Operating System
- 2. C / C++ / Java Compiler
- 3. YACC and LEX tools

Course Outcomes:

On completion of the course the students will be able to

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Evaluate the performance of lexical analysis and syntax analysis
- CO2: Summarize the complexity of intermediate code generators
- CO3: Construct methods to identify patterns, tokens using regular expressions and CFG
- CO4: Implement different schemes / ways for code optimization
- CO5: Evaluate the knowledge of modern programming languages for generating target language

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3	2							2	2	2
CO2		3	2	3								2	2	
CO3		2	3	3								2	3	3
CO4:		3	3	3								2	3	3
CO5:		3	3	2	1							2	3	

1 – Slight, 2 – Moderate, 3 – Substantial

1

14EGL41 COMMUNICATION SKILLS LABORATORY

(Common to all Engineering and Technology branches)

LIST OF EXPERIMENTS:

1. Listening Skills: Listening activity using software package in the communication laboratory - Listening to native speakers - Developing oral communication by imitating the model dialogues. Listening for specific information – Listening to improve pronunciation – Listening and typing – Filling the blanks–TV programmes and News.

Audio Visual Lab: Activity based learning

2. Activity based Reading Skills: Reading for getting information and understanding; scanning, skimming and identifying topic sentences – Reading for gaining knowledge-Group activity.

3. Activity based Writing Skills: Preparing a draft – Word editing features, editing and proof reading; Writing a short essay using the draft prepared - Group activity.

4. Speaking Skills: Verbal and Non-Verbal Communication; Introducing oneself -Describing a place, Expressing views and opinions; Giving a presentation on a Topic - eye contact, speaking audibly, clearly and with confidence; Group discussion.Conversations – Face-to-Face conversation – Simulated Telephonic Conversation.

Career Lab

5. Interview Skills: Introducing oneself – Answering other FAQ's. Presentation Skills: Elements and structure of effective presentation – Presentation Tools – Voice modulation – Body language –Video samples. Group Discussion: Structure of Group Discussion – Strategies in group discussion - Team work – Video Samples. Soft Skills: Fundamentals of Soft Skills – Work Place Culture and Inter-Personal Relationships.

TOTAL : 45

REFERENCES / MANUALS / SOFTWARE:

1. Orell Digital Language Lab Software

Course Outcomes:

On completion of the course the students will be able to **COURSE OUTCOMES**

On completion of the course the students will be able to

- CO1: communicate efficiently in real life and career related situations
- CO2: demonstrate good Presentation skills and team skills
- CO3: familiarize in using modern communication software packages to enhance their soft skills

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1									3	3		2		
CO2									2	3		1		
CO3									1	3		2		

1 – Slight, 2 – Moderate, 3 – Substantial

14GET71 TOTAL QUALITY MANAGEMENT

(Common to all Engineering and Technology branches)

UNIT-I

Quality (Basic concepts and principles) : Definition of Quality, Dimensions of Quality, Quality Planning, Quality costs, Basic concepts of Total Quality Management, Historical Review. Principles of TQM, Leadership - Concepts, Quality Council, Quality Statements, Strategic Planning, Deming Philosophy, Barriers to TQM Implementation.

UNIT – II

TQM Principles and strategies : Customer satisfaction - Customer Perception of Quality, Customer Complaints, Customer Retention, Employee Involvement - Motivation, Empowerment, Teams, Recognition and Reward, Performance Appraisal, Benefits. Continuous Process Improvement – Juran Trilogy, PDSA Cycle, 5S, Kaizen, Supplier Partnership – Partnering, sourcing, Supplier Selection, Supplier Rating, Relationship Development

UNIT – III

TQM Tools (Process Control): The seven tools of quality, Statistical Fundamentals - Measures of central Tendency and Dispersion, Population and Sample, Normal Curve, Control Charts for variables and attributes, Process capability, Concept of six sigma, New seven Management tools.

UNIT - IV

TQM Tools: Benchmarking – Reasons to Benchmark, Benchmarking Process, Quality Function Deployment (QFD) – House of Quality, QFD Process, Benefits, Taguchi Quality Loss Function, Total Productive Maintenance (TPM) -Concept, Improvement Needs, FMEA - Stages of FMEA, Poka Yoke.

UNIT - V

Quality Systems -Need for ISO 9000 and Other Quality Systems, ISO 9000:2008 Quality System - Elements, Implementation of Quality System, Documentation, Quality Auditing, Introduction to TS 16949, QS 9000, ISO 14000, ISO 18000, ISO 20000, ISO 22000.

TOTAL : 45

TEXT BOOKS:

- Besterfield, Dale H. et al., "Total Quality Management", 3rd Edition (Revised), Pearson Education, 2011. 1.
- Subburaj Ramasamy, "Total Quality Management", Tata McGraw Hill, New Delhi, 2008. 2.

REFERENCE BOOKS:

- Feigenbaum A.V., "Total Quality Management", 4th Edition, Tata McGraw Hill, New Delhi, 2004. 1.
- 2. Suganthi L. and Samuel A. Anand, "Total Quality Management", PHI Learning, New Delhi, 2011.
- Evans James R. and Lindsay William M., "The Management and Control of Quality", 7th Edition, South-Western 3. (Thomson Learning), 2011.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: understand the meaning of quality and its importance
- know the principles of total quality management and peculiarities of their implementation CO2:
- develop in-depth knowledge on various tools and techniques of quality management CO3:
- CO4: learn the applications of quality tools and techniques in both manufacturing and service industry
- develop analytical skills for investigating and analyzing quality management issues in the industry and CO5: suggest implement able solutions to those problems.

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2	2	3	2	2	2	2		2
CO2						3	3	3	3	2	2	2		2
CO3	3	2	2	2	2	1		2	2	2	3	3	3	
CO4				2	2	1		2	2	2	3	3		3
CO5						2	2	3	2	2	2	2		3
1 – Slight,	2 - Moc	lerate,	3 – Sub	stantial										

Mapping of COs with POs and PSOs

9

9

0

9

3

9

0

3

64/106

14ITT71 CRYPTOGRAPHY AND NETWORK SECURITY

(Common to IT & CSE branches)

Pre-requisites: Computer Communication Networks

UNIT – I

Introduction and Number Theory: Services, Mechanisms and attacks-the OSI security architecture-Network security model-Classical Encryption techniques (Symmetric cipher model, substitution techniques, transposition techniques, Stream and block cipher techniques)- Number theory: Modular arithmetic-Euclid's algorithm-Random number generation-Fermat's and Euler's theorems - Prime numbers - Testing for primality -The Chinese remainder theorem- Discrete logarithms. 9

UNIT - II

Symmetric Key Cryptography: Data Encryption Standard-Block cipher principles-block cipher modes of operation-Advanced Encryption Standard (AES)-Triple DES. Public key cryptography: Principles of public key cryptosystems-The RSA algorithm- Security of RSA-Key management - Diffie Hellman Key exchange-Elliptic curve arithmetic-Elliptic curve cryptography. 9

UNIT – III

Hash Functions and Digital Signatures: Authentication requirement – Authentication function – MAC – Hash function – Security of hash function and MAC -MD5 - SHA - HMAC - CMAC - Digital signature and authentication protocols : RSAPSS -DSA - DSS - EIGamal - Schnorr - ECDSA. 9

UNIT – IV

Security Practice and System Security: Authentication applications – Kerberos – X.509 Authentication services -Internet Firewalls for Trusted System: Roles of Firewalls - Firewall related terminology- Types of Firewalls - Firewall designs - Firewalls design principles - Trusted systems - Intruder: Intrusion detection system - Types of Intrusion detection system - Virus and related threats - Countermeasures. UNIT – V 9

E-Mail Security: Pretty Good Privacy(PGP) - S/MIME. IPSecurity: Overview of IPSec - IP and IPv6-Authentication Header-Encapsulation Security Payload (ESP)-Internet Key Exchange (Phases of IKE, ISAKMP/IKE Encoding). Web Security: SSL/TLS Basic Protocol-computing the keys - client authentication-PKI as deployed by SSL - SET for E-**Commerce Transactions**

Lecture:45, Tutorial:15, TOTAL: 60

TEXT BOOKS:

- William Stallings, "Cryptography and Network Security", 6th Edition, Pearson Education, 2013. 1.
- Behrouz A. Ferouzan, Debdeep Mukhopadhyay,"Cryptography and Network Security", 2nd Edition, Tata Mc Graw 2. Hill, 2010.

REFERENCE BOOKS:

- Charles P Fleeger, "Security in Computing", 4th Edition, Prentice Hall of India, 2006. 1.
- Man Young Rhee, "Internet Security: Cryptographic Principles, Algorithms and Protocols", 1st Edition, Wiley 2. Publications, 2003.
- Bruce Schneier and Neils Ferguson, "Practical Cryptography", 1st Edition, Wiley Dreamtech India Pvt. Ltd., 2003. 3.
- Douglas R. Simson, "Cryptography Theory and Practice", 1st Edition, CRC Press, 1995. 4.
- http://nptel.ac.in 5.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Understand OSI security architecture and classical encryption techniques
- CO2: Acquire knowledge in symmetric and public key cryptography
- CO3: Know about hash function and digital signatures
- CO4: Recognize security practice and system security
- CO5: Gain knowledge in email and web security

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2				2						2	3	2
CO2	3	3				2		1				2	3	3
CO3	3	2				2						2	3	2
CO4	1	3				2		1				1	1	2
CO5		3												

1 – Slight, 2 – Moderate, 3 – Substantial

3 1 0 4

14CST72 MOBILE COMMUNICATION

(Common to CSE & IT branches)

Pre-requisites: Basic knowledge about data communication such as concepts of modulation, error correction code as well as networking concepts such as TCP/IP protocols.

UNIT – I

Wireless communication: Wireless transmission - Frequencies for radio transmission - Signals - Antennas - Signal Propagation – Multiplexing – Spread spectrum –cellular systems- MAC-Motivation – SDMA – FDMA – TDMA – CDMA

UNIT – II

Telecommunication Systems: Tele Communications – GSM: Mobile services - System architecture - Radio interface -Protocols - Localization and calling - Handover - Security - New data services- Satellite Systems - Basics - Routing -Localization-Handover.

UNIT – III

Wireless Networks: Wireless LAN - Infrared Vs Radio Transmission - Infrastructure Networks and Adhoc Networks -IEEE 802.11 - HIPERLAN: HIPERLAN1 - Bluetooth-User scenarios-Architecture.

UNIT – IV

Mobile Network and Transport Layer: Mobile IP –Dynamic Host Configuration Protocol-Mobile ad-hoc Networks – Improvement on TCP for mobile and wireless network

UNIT – V

Mobile Platforms and Application Layer: WAP-Architecture-Wireless application environment-Mobile Device Operating Systems: Special constraints and Requirements-Commercial mobile Operating System: Windows Mobile, Palm OS, iOS, Android, BlackBerry

TEXT BOOKS:

- Schiller J., "Mobile Communication", 2nd Edition, Pearson Education, New Delhi, 2014. 1.
- Prasant Kumar Pattnaik, RajibMall, "Fundamentals of Mobile Computing", PHI Learning Pvt. Ltd., New Delhi, 2. 2012.

REFERENCE BOOKS:

- Asoke K. Talukdar, "Mobile Computing", 2nd Edition, Tata McGraw Hill, 2010. 1.
- Theodore S. Rappaport, "Wireless Communications: Principles and Practice", 2nd Edition, Pearson Education, 2014. 2.
- Hansmann Uwe, Merk Lothar, Nicklons Martin S. and Stober Thomas, "Principles of Mobile Computing", 2nd 3. Edition, Apress / Springer (India) Pvt. Ltd., 2013.
- Stallings William, "Wireless Communication and Networks", Prentice Hall of India, New Delhi, 2007. 4.

COURSE OUTCOMES

On completion of the course the students will be able to

- recognize the fundamental concepts in CO1:
- transmission and articulate the working principles of telecommunication systems
- express the concepts and features of satellite, broadcast and Wireless LAN systems CO2:
- CO3: summarize the concepts and issues in the mobile TCP/IP techniques
- CO4: explain the architecture of WAP and its use to access the web contents through mobiles
- CO5: describe the commercial mobile operating systems and their features

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2										3	2	1
CO2		2	2									2	2	2
CO3		2	2									3	2	3
CO4			2			1						3		3
CO5					2	1						2		3

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL: 45

9

3

0

0

3

Q

9

9

14ITL71 CRYPTOGRAPHY AND NETWORK SECURITY LABORATORY

(Common to IT & CSE branches)

0

0

3

TOTAL: 45

1

LIST OF EXPERIMENTS:

1. Implement the following Modular Arithmetic and Number theory concepts

- a) Euler's theorem, Fermat's theorem and Extended Euclidean theorem
- b) Random Number generation
- c) Miller Rabin Primality Testing
- d) Factorization of a number
- e) High power exponentiation calculation
- 2. Implement the following substitution and transposition techniques concepts:
- a) Caesar Cipher
 - b) Playfair Cipher
 - c) Hill Cipher
 - d) Vigenere Cipher
 - e) Rail fence row and Column Transformation
- 3. Implement the following symmetric key algorithms
 - a) DES
 - b) AES
- 4. Implement the following Asymmetric Key algorithms
 - a) RSA Algorithm
 - b) Diffee-Hellman
 - c) ECC

5. Implement the following Cryptographic hash function algorithms

- a) Develop own hash function to meet the requirements for security
- b) MD5
- c) SHA-1
- 6. Implement the following Digital Signature algorithms
 - a) DSS
 - b) ElGamal
 - c) Schnorr
 - d) ECC
- 7. Demonstrate how to provide secure data storage, secure data transmission and for creating digital signatures.
- 8. Setup a honey pot and monitor the honey pot on network (KF Sensor)
- 9. Demonstrate Intrusion Detection System (IDS) using any tool (snort or any other s/w)

REFERENCES / MANUALS / SOFTWARE:

1. C / C++ / Java, GnuPG, KF Sensor, Snort and rootkit

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Understand the number theory concepts
- CO2: Implement the symmetric and asymmetric algorithms
- CO3: Develop their own security algorithms

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2			3									2	2
CO2	2			3									2	2
CO3	2			3									2	3

1 – Slight, 2 – Moderate, 3 – Substantial

14CSL72 MOBILE COMMUNICATION LABORATORY (Common to CSE & IT branches)

LIST OF EXPERIMENTS /EXERCISES: Experiments on GSM / GPRS Basic AT Commands Voice calls / Voice communication Simple Message Service Experiments on GSM / GPRS Phone book : Dial Contact, Delete Contact, Add contact Mobile station call experiment, Mobile station called experiment GPRS : Sending and receiving file over FTP Experiments using ZigBee

- Data communication between co-ordinator and device module
- 4. Experiments using WiFi
 - Point-to-Point Communication between two nodes in the network
 - Broadcast Communication from one node to all other nodes.
 - Experiments on interfacing WiFi mote
- 5. Experiments on IoT
 - Experiments on interfacing with UbiSense
 - Experiments on IoT
 - IP based sensor monitoring through UbiSense
- 7. Experiments on interfacing BLE mote
- 8. Experiments on CDMA
 - Spread spectrum and de-spread spectrum
- 9. Experiments using J2ME/WML
 - Design of simple Calculator, Calendar and simple game using WML/J2ME
- 10. Animate an image using WML/J2ME and Browsing the Internet using Mobile phone simulator

REFERENCES / MANUALS / SOFTWARE/HARDWARE:

- 1. Development Kits for GSM/GPRS, ZigBee, WiFi, Bluetooth, IoT, CDMA
- 2. Software Kit : J2ME/WML Tool Kit

Course Outcomes:

6.

On completion of the course the students will be able to

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: describe the working of various mobile communication systems
- CO2: develop and conduct simple real time experiments
- CO3: simulate simple wireless networks and analyze the performance
- CO4: develop mobile apps for simple applications
- CO5: apply the principles and technique to communication systems design or undertake further research

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1		2	2	2							2	2	2
CO2			3	3	3							2	1	3
CO3		2	2	3	3							2	2	3
CO4		2	2	1	2							2	2	3
CO5		2	2									2		2

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

0 0 3 1

TOTAL: 45

14ITP71 MINI PROJECT

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Formulate a problem and propose an IT enabled solutions to a real world problem.
- CO2: Design in a clear and concise manner
- CO3: Build and execute the project as a team
- CO4: Test and validate the conformance of the developed prototype.
- CO5: Justify the project results using their oral and written presentation skills

					- FF - 8									
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	2	2	1	1	1	2	1	2	2	2	3
CO2	2	3	3	1		1	2		2		3	2		3
CO3	1	3	3	3	3	1	1	1	3	3	1	1		3
CO4:	1	2	3	3	2				1	2		1	1	2
CO5:		1						2	3	3	2	1	2	2

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

14GET81 PROFESSIONAL ETHICS AND HUMAN VALUES

(Common to all Engineering and Technology branches)

UNIT – I

Understanding: Morals – Values-Ethics– Honesty – Integrity – Work Ethic – Service Learning – Civic Virtue – caring – Sharing – Courage – Valuing Time – Co-operation – Commitment – Empathy –Self-Confidence – Character – Spirituality-Senses of 'Engineering Ethics' - variety of moral issues - types of inquiry.

UNIT – II

Moral dilemmas – moral autonomy – Kohlberg's theory – Gilligan's theory – consensus and controversy – Models of Professional Roles – theories about right action – Self-interest – customs and religion- uses of ethical theories. Meaning of Engineering experimentation - engineers as responsible experimenters.

UNIT – III

Codes of ethics for engineers - a balanced outlook on law - the challenger case study. Safety and risk - assessment of safety and risk - risk benefit analysis and reducing risk, Bhobal Gas Tragedy and Chernobyl case studies.

$\mathbf{UNIT} - \mathbf{IV}$

Collegiality and loyalty – respect for authority – collective bargaining – confidentiality – conflicts of interest – occupational crime – professional rights – employee rights – discrimination – Intellectual Property Rights (IPR) – Multinational corporations.

UNIT – V

Environmental ethics - Computer ethics – weapons development-engineers as managers-consulting engineers-engineers as expert witnesses and advisors -moral leadership-sample code of Ethics like ASME, ASCE, IEEE, Institution of Engineers (India), Indian Institute of Materials Management, Institution of Electronics and Telecommunication Engineers(IETE).

TEXT BOOKS:

- 1. Martin Mike and Schinzinger Roland, "Ethics in Engineering", 4th Editon, Tata McGraw-Hill, New Delhi, 2014.
- 2. Govindarajan M., Natarajan S., and Senthil Kumar V.S., "Engineering Ethics", Prentice Hall of India, New Delhi, Reprint 2013.

REFERENCE BOOKS:

- 1. Fleddermann Charles D., "Engineering Ethics", 4th Edition, Pearson Education/Prentice Hall, New Jersey, 2014.
- 2. Harris Charles E., Protchard Michael S. and Rabins Michael J., "Engineering Ethics: Concepts and Cases", 4th Edition Wadsworth Thompson Learning, United States, 2008.
- 3. Seebauer Edmund G. and Barry Robert L., "Fundamentals of Ethics for Scientists and Engineers", Oxford University Press, Oxford, 2008.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: understand the components of ethics and values
- CO2: understand the knowledge interpersonal and organizational issues in ethics
- CO3: acquire knowledge on ethical theories and their application
- CO4: highlight ethical issues in risky situation
- CO5: understand the role of professional bodies

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1						2	2	3	2	2		2		
CO2						2	2	3	2	2		2		
CO3						2	2	3	2	2		2		
CO4						3	3	3	2	2		2		3
CO5						2	2	3	2	3		2		3

1 - Slight, 2 - Moderate, 3 - Substantial

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

9

3

9

9

9

9

TOTAL : 45

3

14ITP81 PROJECT WORK

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Propose an IT based solution in a clear and concise manner
- CO2: Identify a problem and summarize an appropriate list of literature review related to the problem.
- CO3: Formulate clearly a work plan, procedures and execute the project as a team
- CO4: Organise, record and compile the work done throughout the project
- CO5: Conclude the approach with the results obtained using their oral and written presentation skills

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3	2	2	1	1	1	2	1	2	2	2	3
CO2	2	3	3	1		1	2		2		3	2	3	3
CO3	1	3	3	3	3	1	1	1	3	3	2	1	2	3
CO4:	1	2	3	3	2				1	2		1	1	2
CO5:	1	1						2	3	3	2	1	2	2

1 – Slight, 2 – Moderate, 3 – Substantial

14CST52 THEORY OF COMPUTATION

(Common to CSE & IT branches)

Pre-requisites: Discrete Mathematics

UNIT – I

Automata and Regular Expressions: Introduction to formal proof -Finite Automata (FA) – Deterministic Finite Automata (DFA)– Non-deterministic Finite Automata (NFA) – Finite Automata with Epsilon transitions.

UNIT – II

Regular Expressions and Languages: Regular expression – FA and regular expressions – Proving languages not to be regular – Closure properties of regular languages – Equivalence and minimization of automata.

UNIT – III

Context Free Grammar and Languages: Context-Free Grammar (CFG) – Parse trees – Ambiguity in grammars and languages. Definition of the pushdown automata – Languages of pushdown automata – Equivalence of pushdown automata and CFG- Deterministic pushdown automata.

$\mathbf{UNIT} - \mathbf{IV}$

Context Free Languages and Turing Machines: Normal forms for CFG- Chomsky Normal Form and Greibach Normal Form – Pumping lemma for CFL. Turing machines – Programming techniques for Turing machines.

UNIT - V

Undecidability: A language that is not Recursively Enumerable (RE) – An undecidable problem that is RE – Undecidable problems about Turing machine – Post's correspondence problem-The classes P and NP – Kruskal's algorithm – The traveling salesman problem.

TEXT BOOKS:

- 1. Hopcroft J.E., Motwani R. and Ullman J.D., "Introduction to Automata Theory, Languages and Computations", 3rd Edition, Pearson Education, New Delhi, 2008.
- 2. Martin J., "Introduction to Languages and the Theory of Computation", 4th Edition, Tata McGraw-Hill, New Delhi, 2010.

REFERENCE BOOKS:

- 1. Lewis H.R. and Papadimitriou C.H., "Elements of the Theory of Computation", 2nd Edition, Pearson Education / PHI, New Delhi, 2007.
- 2. Linz P., "Introduction to Formal Language and Computation", 4th Edition, Narosa Publishing, 2007.
- 3. Nasir and Sirmani, "A Text Book on Automata Theory", Cambridge University Press, 2008.
- 4. Kamala Krithivasan and Rama R., "Introduction to Automata Theory, Formal Languages and Computation", 1st Edition, Pearson Education, 2009.
- 5. Kavi Mahesh, "Theory of Computation : A Problem-Solving Approach", International Edition, Wiley India Pvt. Ltd., 2011.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: apply induction and contradiction methods for theorem proving
- CO2: identify regular languages and context Free Languages using formal tools
- CO3: explain the relation between regular language and context free language and corresponding recognizers
- CO4: differentiate problems in terms of complexity/computability using Turing machines
- CO5: develop a theoretical model for problem solving situations in related areas of theoretical computer science

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1									2	3	2
CO2	1	3	2		2							2	3	3
CO3	1	3	2		2							2	3	3
CO4	1	3	2									2	3	3
CO5	1	3	2									2	3	3

1 – Slight, 2 – Moderate, 3 – Substantial

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

9

9

9

4

0

3

Lecture: 45, Tutorial: 15, TOTAL: 60

1

Q

14CSE01 ADVANCED DATABASES

(Common to CSE & IT branches)

UNIT - I

Distributed Databases: Distributed DBMS Concepts and Design – Introduction – Functions and Architecture of DDBMS – Distributed Relational Database Design – Transparency in DDBMS – Distributed Transaction Management – Concurrency control – Deadlock Management – Database recovery – The X/Open Distributed Transaction Processing Model –Distributed Query Optimization - Distribution and Replication in Oracle.

UNIT - II

Object Oriented Databases: Object Relational DBMS - Introduction – Weakness of RDBMS –Storing Objects in Relational Databases – Object-Oriented DBMSs-Concepts and Design – Next Generation Database Systems –Introduction – Persistence – Issues in OODBMS – Advantages and Disadvantages of OODBMS – Comparison of ORDBMS and OODBMS – Object Oriented Database Design – OODBMS Standards and Systems – Object Management Group – Object Database Standard ODMG – ObjectStore.

UNIT - III

Web Databases: Web Technology And DBMS – Introduction – The Web – Scripting languages – Common Gateway Interface – HTTP Cookies – Extending the Web Server – Java – Microsoft's Web Solution Platform – Oracle Internet Platform – Semi structured Data and XML – XML Related Technologies – XML Query Languages

UNIT - IV

Intelligent Databases: Enhanced Data Models For Advanced Applications – Active Database Concepts And Triggers – Generalized Model for active databases – Design and Implementation issues-Examples and applications - Temporal Database Concepts – Time representation, Calendars and Time dimensions–Tuple versioning – Attribute versioning-Multimedia databases - Deductive databases .

UNIT V

Current Trends: Spatial Databases – Data Warehousing – Data Mining– NOSQL Databases – Big Data Storage Systems– Big Data Technologies– MapReduce– Hadoop. TOTAL: 45

TEXT BOOKS:

- 1. Connolly Thomas M. and Begg Carolyn E., "Database Systems: A Practical Approach to Design, Implementation and Management", 6th Edition, Pearson Education, New Delhi, 2014.
- 2. Elmasri Ramez and Navathe, Shamkant B, "Fundamentals of Database Systems", 7th Edition, Pearson Education, New Delhi, 2015.

REFERENCE BOOKS:

- 1. Ozsu M.Tamer and Ualduriel Patrick, "Principles of Distributed Database Systems", 2nd Edition, Pearson Education, New Delhi, 2003.
- 2. Prabhu C.S.R., "Object Oriented Database Systems", Prentice Hall of India, New Delhi, 2003.
- 3. Rob Peter and Coronel Corlos, "Database Systems: Design, Implementation and Management", 5th Edition, Thompson Learning Course Technology, New Delhi, 2003.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: distinguish between traditional databases and distributed databases
- CO2: identify the advantages and disadvantages of OODBMS
- CO3: specify the features of web databases
- CO4: categorize different types of intelligent databases
- CO5: provide an overview of latest trends in databases

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3	3		2							3	2	3
CO2		3	3		2							3	2	3
CO3		3	3		2							3	2	3
CO4	1	3	3		2							3	2	3
CO5		3	3		3							3	2	3

1 – Slight, 2 – Moderate, 3 – Substantial

9

3

0

3

9

9

Q

9

14CSE02 ARTIFICIAL INTELLIGENCE (Common to CSE & IT branches)

Pre-requisites: Data Structures, Design and Analysis of Algorithms

Unit – T

Introduction: Definition, Foundations and History. Intelligent Agents: Concept of Rationality, Environments and Structure. Solving Problems by Searching: Problem-Solving Agents, Example, Searching for Solutions, Search Strategies and constraint Satisfaction Search.

Unit –II

Logical Agents: Knowledge-Based Agents, Wumpus World, Propositional Logic, Propositional Theorem, Propositional Model Checking, Agents Based on Propositional Logic. First-Order Logic: Representation, Syntax and Semantics, Using First-Order Logic and Knowledge Engineering. Inference in First-Order Logic: Unification and Lifting, Forward and Backward Chaining, Resolution.

Unit – III

Classical Planning: Definition, Algorithm, Planning Graphs and other Approaches. Planning and Acting: Time, Schedules, and Resources, Planning and Acting in Nondeterministic Domains, Hierarchical and Multiagent Planning.

Unit – IV

Quantifying Uncertainty: Acting under Uncertainty, Probability Notation, Inference, Independence and Bayes' Rule. Probabilistic Reasoning: Semantics and Inference of Bayesian Networks, Relational and First-Order Probability Models, Probabilistic Reasoning over Time: Inference, Hidden Markov Models, Kalman Filters and Dynamic Bayesian Networks. Making Simple Decisions: Utility Theory and Functions and Decision Networks.

Unit – V

Learning from Examples: Forms, Decision Trees, Theory of Learning, Linear Models, Artificial Neural Networks, Nonparametric Models, Support Vector Machines, Ensemble Learning. Knowledge in Learning: Logical Formulation, Explanation-Based Learning, Relevance Information, Inductive Logic Programming. Reinforcement Learning: Passive and Active Reinforcement Learning and Generalization

TEXT BOOKS:

Stuart Russell and Peter Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Pearson Education, 1. 2013.

REFERENCE BOOKS:

- Poole D. and Mackworth A., "Artificial Intelligence: Foundations of Computational Agents", 1st Edition, Cambridge 1. University Press, 2010.
- 2.
- Brachman R. and Levesque H., "Knowledge Representation and Reasoning", 1st Edition, Morgan Kaufmann, 2004. Luger G., "Artificial Intelligence: Structures and Strategies for Complex Problem Solving", 6th Edition, Addison 3. Wesley, 2008.
- Alpaydin E., "Introduction to Machine Learning", 2nd Edition, MIT Press, 2010. 4

COURSE OUTCOMES

On completion of the course the students will be able to

- define intelligent agents and apply searching for solving problem CO1:
 - CO2: interpret the role of logics in AI
 - CO3: handle uncertainty in real world problems
 - CO4: build simple knowledge-based systems
 - CO5: apply knowledge representation, reasoning, and machine learning techniques to real-world problems

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3										2	3	
CO2	3	3										2	3	
CO3	1	2	3	3		1							3	2
CO4	2		3										2	3
CO5	1	1	2	2	2								1	2

1 – Slight, 2 – Moderate, 3 – Substantial

0 0 3

3

g

9

9

9

9

14CSE03 ADVANCED JAVA PROGRAMMING

(Common to CSE & IT branches)

Pre-requisites: Java Programming

UNIT – I

Java Swing: Introduction - Features - MVC Connection - Components and Containers - Swing Package - Simple Application - Event Handling - Swing Applet - Painting in Swing. Exploring swing: JLabel and ImageIcon – JTextField - Swing Buttons – JTabbedPane – JList - JComboBox.

UNIT – II

Advanced Swing Components and JDBC: Swing Components: Trees – JTable – Tooltips - Swing Menus: Menu basic - JMenuBar, JMenu, JMenuItem - Main Menu – Mnemonics and Accelerators to menu items - Images and Tooltips to MenuItems – JRadioButtonMenuItem – JCheckBoxMenuItem - Popup Menus – ToolBar - Actions. Java Database Programming: java.sql Package - Database connectivity - Relational databases - JDBC API - Case Study: Payroll system using Swing Components and JDBC.

UNIT – III

Network Programming and RMI: Network Programming : Basics - Classes and Interfaces – InetAddress - Factory methods - Instance Methods - Inet4Address and Inet6Address - TCP/IP Client Sockets – URL – URLConnection – HttpURLConnection - URI Class – Cookies - TCP/IP Server sockets – Datagrams - RMI architecture - Developing Simple RMI applications.

$\mathbf{UNIT} - \mathbf{IV}$

Servlets: Introduction - HTTP Servlet Basics: Servlet API – Page Generation – Web Applications. Servlet Life Cycle: Servlet Alternatives – Reloading – init and destroy – Single Thread Model – Background Processing – Load on Startup – Client-Side Caching – Server-Side Caching - Retrieving information – Sending HTML information .

$\mathbf{UNIT} - \mathbf{V}$

Servlets and JSP: Servlets : Session Tracking : User Authentication – Hidden Form Fields- URL Rewriting – Persistent Cookies- Session Tracking API - Case Study : Login Application using Session tracking. Java Server Pages : Basics - Expression and Declaration – Directives – JSP and Java Beans – Includes and Forwards – Custom Tag libraries- Simple JSP program. Case Study: Resume registration web application using Servlets, JDBC and JSP

TEXT BOOKS:

- 1. Schildt, Herbert, "Java: The Complete Reference", 9th Edition, Tata McGraw-Hill, New Delhi, 2014.
- 2. Jason Hunter and William Crawford, "Java Servlet Programming", 2nd Edition, O'Reilly Media, 2010.

REFERENCE BOOKS:

- 1. Elliotte Rusty Harold, "Java Network Programming", 4th Edition, O'Reilly Media, 2013.
- 2. Marc Loy, Robert Eckstein, Dave Wood, James Elliott and Brian Cole, "Java Swing", 2nd Edition, O'Reilly Media, 2002.
- 3 "Java Server Programming Java EE7 Black Book", Dream Tech Press, 2015.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: develop Java Swing Applications
- CO2: create desktop applications with Database connectivity and Swing
- CO3: develop network applications with socket programming
- CO4: demonstrate the RMI architecture and its applications
- CO5: design server side programs with JSP and Servlets

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			3		3							2		3
CO2			3		3							2		3
CO3			3		3							2		3
CO4			3		3							2		3
CO5			3		3							2		3

1 – Slight, 2 – Moderate, 3 – Substantial

9

3

Q

3

0

0

9

9

9

14MAT41 NUMERICAL METHODS

(Common to Civil, EEE, EIE, ECE, CSE, IT, Chemical & Food Technology)

UNIT – I

Solution to Algebraic and Transcendental Equations: Iteration method – Method of false position – Newton-Raphson method - Solution of linear system of equations - Direct methods: Gauss elimination method and Gauss - Jordan method -Iterative methods: Gauss Jacobi and Gauss - Seidel methods.

UNIT – II

Interpolation: Interpolation with equal intervals: Newton's forward and backward difference formulae - Central difference interpolation formulae: Gauss forward and backward interpolation formulae - Interpolation with unequal intervals: Lagrange's interpolation formula – Newton's divided difference formula.

UNIT - III

Numerical Differentiation and Integration: Differentiation using Newton's forward, backward and divided difference formulae – Numerical integration: Trapezoidal rule – Simpsons $1/3^{rd}$ rule – Double integrals using Trapezoidal and Simpson's rules.

UNIT – IV

Numerical Solution of First order Ordinary Differential Equations: Single step methods: Taylor series method - Euler method - Modified Euler method - Fourth order Runge-Kutta method - Multi step methods: Milne's predictor corrector method - Adam's Bashforth method.

UNIT – V

Solutions of Boundary Value Problems in PDE: Solution of one dimensional heat equation - Bender -Schmidt recurrence relation - Crank - Nicolson method - One dimensional wave equation - Solution of two dimensional Laplace equations - Solution of Poisson equation. Lecture: 45, Tutorial: 15, TOTAL: 60

TEXT BOOKS:

- Kandasamy P., Thilakavathy K. and Gunavathy K., "Numerical Methods", Reprint Edition, S.Chand & Co, New
- 1 Delhi, 2014. Ramachandran T., "Numerical Methods with Programming C", 2nd Edition, Tata McGraw-Hill
- 2. Veerarajan T., Publishing Company Ltd., New Delhi, 2008.

REFERENCE BOOKS:

- Balagurusamy E., "Numerical Methods", Reprint Edition, Tata McGraw-Hill Publishing Company Ltd., New Delhi, 2007.
- 2. Jain M.K., Iyengar S.R.K. and Jain R.K., "Numerical Methods for Scientific and Engineering Computation", 6th Reprint, New Age International Pvt. Ltd., New Delhi, 2014.
- Sankara Rao K., "Numerical Methods for Scientists and Engineers", 3rd Edition, Prentice Hall of India Pvt. Ltd., New 3. Delhi, 2008.
- Gerald C.F. and Wheatley P.O., "Applied Numerical Analysis", 7th Edition, Pearson Education, Asia, New Delhi, 4. 2006.
- Grewal B.S., "Numerical Methods in Engineering and Science", 9th Edition, Khanna Publishers, 2007. 5.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Know the various methods of solving algebraic and transcendental equations numerically.
- CO2: Understand the concept of interpolation.
- CO3: Gain knowledge on the concepts of numerical differentiation and integration.
- CO4: Obtain the solution of ordinary differential equations numerically.
- CO5: Apply various numerical techniques in solving complex partial differential equations.

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	1	1								1	1	1
CO2	3	3										1	1	
CO3	3	3	1	1								1	1	
CO4	3	3	1	1								1	1	1
CO5	3	3	1	1								1	1	

1 – Slight, 2 – Moderate, 3 – Substantial

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

Q

Q

1

0

4

0

9

Q

14ECT42 SIGNALS AND SYSTEMS (Common to ECE & IT branches)

UNIT – I

Classification of Signals and Systems: Signals: Types of continuous and discrete time signals - Classification of CT and DT signals – Basic operations on signals. **Systems:** CT and DT systems- Classification and properties of systems.

UNIT – II

Analysis of CT and DT Signals: Differential and difference equations- Representation of CT and DT signals- Impulse response-Step response-Convolution integral and convolution sum - Graphical procedure for convolution - Properties-Interconnection of systems.

UNIT – III

Frequency Domain Analysis (Fourier Series and Fourier Transform): Complex exponential Fourier series analysis - Properties- Spectrum of signals. Fourier Transform: CTFT and DTFT - Properties- Response of LTI CT and DT systems. Inverse Fourier Transform-Convolution using FT.

UNIT – IV

Frequency Domain Analysis (Laplace and Z Transform): Laplace Transform: Laplace Transform of CT signals-Properties-Analysis in S-domain-Inverse Laplace Transform – Response of LTI-CT systems. Z- Transform: Z Transform of DT Signals - Inverse Z Transform – Properties of Z-transform – Response of LTI-DT systems.

$\mathbf{UNIT} - \mathbf{V}$

TEXT BOOKS:

Sampling and Realization of Systems: Realization of DT systems: Direct form I - Direct form II - Cascade-Parallel - Transpose structure. Sampling: Theorem - Aliasing - Reconstruction - Sampling of band pass signals.

Lecture: 45, Tutorial: 15, TOTAL: 60

3

1

1. Nagoor Kani A., "Signals and Systems", Tata McGraw Hill Publishing Company, New Delhi, 2010.

REFERENCE BOOKS:

- 1. Roberts M.J., "Signals and Systems Analysis using Transform Method and Matlab", 2nd Edition, Tata McGraw Hill Publishing Company, New Delhi, ,2011.
- 2. Oppenheim, Alan V, Willsky, Alan S, and Hamid Nawab S, "Signals and Systems", 2nd Edition, Pearson Education, New Delhi, 2007.
- 3. Haykin, Simon and Barry Van Veen, "Signals and Systems", 2nd Edition, John Wiley & Sons, New York, 2007.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Represent and analyze the continuous time signals and systems using mathematical models
- CO2: Represent and analyze the discrete time signals and systems using mathematical models
- CO3: Analyze various parameters of signals in time domain
- CO4: Analyze various parameters of signals in frequency domain
- CO5: Identify, formulate and realize linear time invariant systems

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2											3	
CO2	3	3	2										3	
CO3		3		2									2	
CO4		3		2									2	
CO5		3	3	3									2	

1 – Slight, 2 – Moderate, 3 – Substantial

9

0 4

9

Q

14CSC61 GRAPHICS AND MULTIMEDIA

(Common to CSE & IT branches)

	3	0	2	4
Pre-requisites: Mathematics I				
UNIT – I				9
Introduction to Graphics: Introduction - Graphics applications -Graphics systems -	Output Primi	tive: Line	e, Circl	e and
Ellipse drawing algorithms – Attributes of Output Primitives	-			
UNIT – II				9
Two Dimensional Modeling: Two Dimensional Geometric Transformations - Two Dimensional Geometric Transformations - Two Dimensional Comparison (Comparison of Comparison) - Two Dimensional Comparison (Comparison) - Two Dimension (Comparison) - Two Dimen	imensional Cl	ipping an	d View	ving –
Structures and Hierarchical Modeling.				-

UNIT – III

Three Dimensional Modeling: Three dimensional geometric and modeling transformations - Visible surface detection methods - Color models and Color applications

UNIT – IV

Introduction to Multimedia: Introduction – Uses of Multimedia – Interaction Technologies and Devices – Text – Digital Images

$\mathbf{UNIT} - \mathbf{V}$

Animation: Digital Audio – Audio-Visual Media: Video and Animation – Creating Animation in Flash – Designing Multimedia

Lecture: 45, Practical: 15, TOTAL: 60

TEXT BOOKS:

- 1. Hearn Donald and Baker M. Pauline, "Computer Graphics C Version", 2nd Edition, Pearson Education, 2008
- 2. Ashok Banerji and Ananda Mohan Ghosh, "Multimedia Technologies", 1st Edition, Tata McGraw Hill, 2010.

REFERENCE BOOKS:

- 1. Jeffcoate, Judith, "Multimedia in Practice: Technology and Applications", 1st Edition, Prentice Hall of India, 2007.
- 2. Foley James D., Van Dam, Andries, Feiner Steven K. and Hughes John F., "Computer Graphics: Principles and Practice", 2nd Edition, Pearson Education, 2005.
- 3. http://www.entheosweb.com/Flash/default.asp

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Outline the fundamental concepts of computer graphics and the components that constitute 2D and 3D graphics
- CO2: Manipulate 2D and 3D objects by applying transformation, clipping, and viewing operations
- CO3: Identify multimedia applications and manipulate multimedia objects
- CO4: Develop 2D animations using multimedia components
- CO5: Identify the different phases for designing multimedia projects

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2									1	3	
CO2	3	3	3									1	2	3
CO3	3	3	3		3	1						1		2
CO4:	3	3	1		3	1						1	2	3
CO5:		3	2			1						1	2	3

Mapping of COs with POs and PSOs

1 - Slight, 2 - Moderate, 3 - Substantial

9

9

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

14ITE01 DATA WAREHOUSING AND DATA MINING

(Common to IT & CSE branches)

Pre-requisites: Database management systems

UNIT – I

Data Warehouse: Data warehouse -basic concepts- Modeling – Design and usage- Implementation –Data generalization by Attribute-oriented induction approach – Data cube computation methods.

UNIT – II

Data Mining: Introduction- Kinds of Data and Patterns–Major issues in data mining- Data Objects and attribute types – Statistical description of data - Measuring data similarity and dissimilarity. Data preprocessing : Overview-Data cleaning-Data integration –Data reduction-Data transformation and discretization.

UNIT – III

Association Rule Mining: Basic concepts- Frequent itemset mining methods : Apriori algorithm- A pattern growth approach for mining frequent itemsets—Pattern evaluation methods- Mining multilevel , multi dimensional space-constraint based frequent pattern mining.

UNIT – IV

Classification: Basic concepts- Decision Tree Induction - Bayes Classification Methods – Rule Based Classification-Model evaluation and selection techniques to improve classification accuracy – Support Vector Machines- Classification using frequent patterns.

UNIT – V

Clustering: Cluster analysis- Partitioning methods- Hierarchical methods- Density based methods – Grid based methods – Model-Based Clustering Methods – Clustering High Dimensional Data- Constraint based Cluster Analysis – Introduction to outlier analysis -Data Mining Applications.

TEXT BOOKS:

1. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", 3rd Edition, Elsevier, 2012.

REFERENCE BOOKS:

- 1. Gupta G.K., "Introduction to Data Mining with Case Studies", Eastern Economy Edition, Prentice Hall of India, 2006.
- 2. Charu C. Aggarwal, "Data Mining: The Textbook", Kindle Edition, Springer, 2015.
- 3. Margret H. Dunham, "Data Mining : Introductory and Advanced Topics", 17th Edition, Pearson Education, 2013.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: design a data warehouse
- CO2: apply pre processing techniques
- CO3: mine correlation based frequent patterns in large data sets
- CO4: compare and contrast the various classifiers
- CO5: apply data mining techniques and methods to large data sets

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3				2					2	3	2
CO2	2	2	3				2					2	2	3
CO3	2		3			2	3					2	2	3
CO4	2		3			2	3					2	2	3
CO5			2				3					2	2	3

1 – Slight, 2 – Moderate, 3 – Substantial

TOTAL: 45

9

9

3

9

3

0

9 on-

14ITE02 HIGH PERFORMANCE COMPUTER NETWORKS

Pre-requisites: Computer Communication Networks **UNIT – I**

High Speed Networks and Congestion Control: Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture, ATM Logical Connections, ATM Cells – ATM Service Categories – AAL – High Speed LAN's: Fast Ethernet, Gigabit Ethernet, Fibre Channel.

UNIT – II

Wireless LANs: Wireless LANs – Queuing Analysis- Queuing Models – Single Server Queues– Effects of Congestion - Congestion Control – Traffic Management – Congestion Control in Packet Switching Networks – Frame Relay Congestion Control.

UNIT – III

TCP and ATM Congestion Control: TCP Flow control – TCP Congestion Control – Retransmission Timer Management – Exponential RTO Backoff – Karn's Algorithm – Window management – Performance of TCP over ATM - Traffic and Congestion control in ATM: Requirements – Attributes – Traffic Management Frame work – Traffic Control.

UNIT – IV

ABR: ABR traffic Management – ABR Rate Control, RM Cell Formats, ABR Capacity Allocation – GFR Traffic Management. Integrated Services: Integrated Services Architecture – Approach, Components, Services - Queuing Discipline- FQ, PS, BRFQ, GPS, WFQ – Random Early Detection - Differentiated Services.

UNIT – V

Quality of Service in IP Networks: Protocols for QoS Support: RSVP – Goals and Characteristics, Data Flows, RSVP Operation, Protocol Mechanisms – Multiprotocol Label Switching – Operation, Label Stacking, Protocol details – RTP – Protocol Architecture, Data Transfer Protocol, RTCP.

TEXT BOOKS:

1. William Stallings, "High Speed Networks and Internets: Performance and QoS", 2nd Edition, Pearson Education, 2002.

REFERENCE BOOKS:

- 1. Warland and Pravin Varaiya, "High Performance Communication Networks", 2nd Edition, Jean Harcourt Asia Pvt. Ltd., 2000.
- 2. Kasera Sumit and Sethi Pankaj, "ATM Networks", 1st Edition, Tata McGraw Hill, New Delhi, 2006.
- 3. Forouzan, Behrouz A., "Data Communications and Networking", 5th Edition, Tata McGraw-Hill, New Delhi, 2013.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Explain the network protocols, architectures and their applications
- CO2: Analyse the basics of high speed networking technologies
- CO3: Understand the concepts of existing network protocols and networks
- CO4: Design techniques to support real-time traffic and congestion control
- CO5: Recognize the knowledge of network planning and optimization in different levels of Quality of Service

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3		3						1		2	
CO2		3									3		2	2
CO3		3	3	3	3							2	2	2
CO4		1	3								3			2
CO5		3	3	1								3	2	2

1 – Slight, 2 – Moderate, 3 – Substantial

0 0 3

3

9

Q

9

9

9

14ITE03 XML AND WEB SERVICES

3

0

0

(Common to IT & CSE branches)

UNIT - I

XML: Introduction - XML Basics - XML Document Structure – XML Content Model – Rules of XML Structure- Well Formed and Valid Structure - Namespace in XML - Document Type Definition.

UNIT – II

XML Schema and Parsers: Creating XML Schemas - Document Object Model : DOM Levels - Core - Traversal and Range - SAX : Basics - Packages - Implementation - Validation - Handling errors.

UNIT – III

XML Transformation and Database Integration: XSL Technologies – XSLT – XSL for Business to Business Communication – XSL Formatting Objects. XML Database solutions – Modeling Databases in XML.

UNIT – IV

Web Services: Introduction – Technical motivation – SOA - Architecting Web Service – Web Service Building Block – SOAP: Syntax – Messages – Implementations.

$\mathbf{UNIT}-\mathbf{V}$

Web Services Implementation: WSDL - UDDI - Web Service implementation using .NET Framework – Accessing Web Service - Case Study - Temperature Conversion Web Services using AWS.

TEXT BOOKS:

 Ron Schmelzer, Travis Vandersypen, Jason Bloomberg, Madhu Siddalingaiah, Sam hunting, Michael D. Qualls, David Houlding, Chad Darby and Diane Kennedy, "XML and Web Services: Unleashed ", 4th Edition, Pearson Education, 2011.

REFERENCE BOOKS:

- 1. Alex Ferrara and Matthew MacDonald, "Programming .NET Web Services", 1st Edition, O'Reilly, 2002.
- 2. https://aws.amazon.com
- 3. Erik T. Ray, "Learning XML", 2nd Edition, O'Reilly, 2002.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Understand the concepts of XML
- CO2: Explore the validation of XML and parsers in XML
- CO3: Know the XML transformations and database integration
- CO4: Explore the Web Services building blocks
- CO5: Design and implement Web Services

Mapping of COs with POs and PSOs

COs/PO s	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	3			2				2		2	2	1
CO2		2	3			2				2		2	2	2
CO3		2	3			2				2		2	2	3
CO4:		2	3			2				2		2	2	3
CO5:		2	3			2				2		2	2	3

1 – Slight, 2 – Moderate, 3 – Substantial

3 9

9

9

9

9

14ECT51 DIGITAL SIGNAL PROCESSING

(Common to ECE & IT branches)

UNIT – I

DFT and FFT: Review of DFT - Properties of DFT- FFT algorithms - Radix-2 FFT algorithms - Decimation in time - Decimation in frequency algorithms - Linear and circular convolution - Overlap add and save method.

UNIT – II

FIR Filter Design: Amplitude and phase response of FIR filters - Windowing techniques – Rectangular -Hamming- Hanning-Blackmann windows –Kaiser window (Procedure only) - Frequency sampling technique.

UNIT –III

IIR Filter Design: Analogue Butterworth and Chebyshev type-I filters-Frequency transformation in analog domain –Impulse invariance technique –Bilinear transformation – Pre warping – Frequency transformation in digital domain.

$\mathbf{UNIT} - \mathbf{IV}$

Effects of Finite Word Length: Quantization noise – Derivation for quantization noise power –Truncation and rounding error – Input quantization error-Coefficient quantization error-Product quantization error – Limit cycle oscillations- Overflow error-Signal scaling.

$\mathbf{UNIT} - \mathbf{V}$

DSP Processor and its Implementation: Introduction to programmable DSPs –TMS320C67xx – Architecture of C67X – C67X buses – Memory organization- CPU – ALU – Barrel shifter – Multiplier / adder unit –Addressing modes– Instruction set – Application programs.

TEXT BOOKS:

1. Proakis John G. and Manolakis Dimtris G., "Digital Signal Processing: Principles, Algorithms and Application", 4th Edition, PHI Learning, New Delhi, 2007.

REFERENCE BOOKS:

- 1. Venkataramani B. and Bhaskar M., "Digital Signal Processor Architecture, Programming and Application", 2nd Edition, McGraw-Hill, 2002.
- 2. Nagoorkani A., "Digital Signal Processing", 2nd Edition, McGraw Hill, 2012.
- 3. Poornachandra S. and Sasikala B., "Digital Signal Processing", 2nd Edition, McGraw-Hill, New Delhi, 2008.
- 4. http://www.ti.com/lit/ug/spru733a/spru733a.pdf
- 5. http://www.cs.cmu.edu/afs/cs/academic/class/15745-s05/www/c6xref/tms320c6000.pdf

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Design digital filters for real time applications
- CO2: Apply the concepts of finite word length effects in DSP processors
- CO3: Find the frequency components of a signal using efficient algorithms
- CO4: Write programs using DSP processors
- CO5: Implement DSP algorithms in DSP processors

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3		3								3	
CO2	3	2	3	3	3								2	
CO3	3	2	2		3								2	
CO4		3	2		3								3	
CO5			3	2	3								3	

1 – Slight, 2 – Moderate, 3 – Substantial

1 0 4

3

Lecture: 45, Tutorial: 15, TOTAL: 60

0

9

g

Q

14CSE06 SOFTWARE TESTING

(Common to CSE & IT branches)

Pre-requisites: Software Engineering

UNIT – I

Basics of Software Testing: Introduction-definition-approaches-Essentials of software -Important Features of testing process-principles of software testing-salient features of good testing-testing strategy-challenges-test team approachprocess problems faced by testing-cost of testing-categories of defect-developing testing methodology-testing processtesting methodologies

UNIT – II

Testing Environment: Assessing Capabilities, Staff Competency, and User Satisfaction-Creating an Software environment supportive of software testing - Building the software testing process

UNIT – III

Testing Process: Overview of the Software Testing process- The Seven-Step Software Testing Process-Organizing for testing-Workbench-Procedure -Developing the test plan- Workbench-Procedure

UNIT - IV

Testing Process: Verification testing- Workbench-Procedure -Validation testing- Workbench-Procedure Analyzing and reporting test results- Workbench-Procedure

UNIT - V

Incorporating Specialized Testing Responsibilities: Testing client/server systems- Testing software system security -Testing web-based systems -Using Agile Methods to Improve Software Testing

TEXT BOOKS:

- Perry William, "Effective Methods for Software Testing", 3rd Edition, Wiley India, Reprint 2013. 1.
- Limaye M.G., "Software Testing Principles, Techniques and Tools", 1st Reprint, Tata McGraw-Hill, 2009. 2.

REFERENCE BOOKS:

- Rajani Renu and Oak Pradeep, "Software Testing Effective Methods: Tools and Techniques", Tata McGraw-Hill, 1. New Delhi, 2006.
- Kit Edward, "Software Testing in the Real World: Improving the Process", 3rd Impression, Pearson Education, New 2. Delhi, 2005.

COURSE OUTCOMES

On completion of the course the students will be able to

- identify the step by step activities and set up environment for software testing CO1:
- express the procedure to develop test plan and analyze as well as report the test results CO2:
- CO3: demonstrate the process of testing the various modules of the application
- CO4: apply software testing for client server and web based systems
- point out the agile methods to improve testing CO5:

Mapping of COs with POs and PSOs

					11 6	,								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	2			2								3
CO2		3	2			2								3
CO3		3	2			2			3			3		3
CO4		3	2			2			3			3		3
CO5		3	2			2						3		3

1 – Slight, 2 – Moderate, 3 – Substantial

0

3

9

9

9

0

3

Q

9

14CSE07 SOCIAL NETWORK ANALYSIS

(Common to CSE & IT branches)

Pre-requisites: Data Mining

UNIT - I

Introduction: Statistical Properties of Social Networks- Preliminaries- Static Properties - Dynamic Properties - Random Walks on Graphs: Background - Random Walk based Proximity Measures - Other Graph-based Proximity Measures -Graph-theoretic Measures for Semi-supervised Learning - Clustering with random walk based measures

UNIT - II

Community Discovery: Communities in Context - Core Methods: Quality Functions - The Kernighan-Lin(KL) algorithm - Agglomerative/Divisive Algorithms - Spectral Algorithms - Multi-level Graph Partitioning - Markov Clustering - Node Classification in Social Networks: Problem Formulation - Methods using Local Classifiers - Random Walk based Methods - Applying Node Classification to Large Social Networks

UNIT - III

Social Influence Analysis: Influence Related Statistics - Social Similarity and Influence - Influence Maximization in Viral Marketing- Expert Location in Social Networks: Expert Location without Graph Constraints - Expert Location with Score Propagation

UNIT - IV

Link Prediction In Social Networks: Feature based Link Prediction : Feature Set Construction - Classification Models -Bayesian Probabilistic Models: - Link Prediction by Local Probabilistic Models - Network Evolution based Probabilistic Model - Hierarchical Probabilistic Model:-Probabilistic Relational Models : Relational Bayesian Network - Relational Markov Network

UNIT - V

Visualization: Structural Visualization - Semantic and Temporal Visualization - Statistical Visualization - Text Mining in Social Networks: Keyword Search : Query Semantics and Answer Ranking - Keyword search over XML and relational data - Keyword search over graph data - Classification Algorithms - Clustering Algorithms

TEXT BOOKS:

Charu C. Aggarwal, "Social Network Data Analytics", Springer, 2011. 1

REFERENCE BOOKS:

- 1.
- Peter Mika, "Social Networks and the Semantic Web", 1st Edition, Springer, 2007. Borko Furht, "Handbook of Social Network Technologies and Applications", 1st Edition, Springer, 2010. 2.
- Guandong Xu, Yanchun Zhang and Lin Li, "Web Mining and Social Networking Techniques and Applications", 3. 1st Edition, Springer, 2011.

Giles, Mark Smith, John Yen, "Advances in Social Network Mining and Analysis", Springer, 2010. 4.

Ajith Abraham, Aboul Ella Hassanien, Václav Snášel, "Computational Social Network Analysis: Trends, Tools and 5. Research Advances", Springer, 2009.

COURSE OUTCOMES

On completion of the course the students will be able to

- work on the internals components of the social network CO1:
- CO2: model and visualize the social network
- CO3: mine the behaviour of the users in the social network
- CO4: predict the links from social network
- CO5: mine the opinion of the user

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2												2
CO2		3	3		2									2
CO3		3	3		2									2
CO4		3	3		2									2
CO5		3	3		2									2

1 – Slight, 2 – Moderate, 3 – Substantial

9

3

0

0 3

Q

Q

9

9

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

14CSE11 BUSINESS INTELLIGENCE AND ITS APPLICATION

(Common to CSE & IT branches)

Pre-requisites: Data Warehousing and Data Mining

UNIT - I

Introduction: Business View of Information Technology Applications: Core Business Processes - Baldrige Business Excellence Framework - Purpose of using IT in Business - Characteristics of Internet-ready IT Applications Enterprise Applications – Information users and their requirements. Types of Digital Data: Introduction – Getting into GoodLife Database - Structured Data - Unstructured Data - Semi-Structured Data - Difference between semistructured and structured data. 0

UNIT – II

Business Intelligence and Data Integration: Business Intelligence: Definition - Evolution - Need for BI - BI Value Chain - Business Analytics - BI Framework - BI Users - BI Applications - BI Roles and Responsibilities - Data Integration : Need for Data Warehouse - Definition of Data Warehouse - Data mart - Ralph Kimball's Approach vs.W.H.Inmon's Approach - Goals of Data Warehouse - ETL Process - Data Integration Technologies - Data Quality Data Profiling.

UNIT - III

OLTP, OLAP and Multidimensional Data Modeling: OLTP - OLAP - OLAP Architectures - Data Models - Role of OLAP Tools in BI - OLAP Operations - Basics of Data Modeling - Types of Data Model - Data Modeling Techniques - Fact Table - Dimension Table - Dimensional Models - Dimensional Modeling Life Cycle - Designing the Dimensional Model.

UNIT - IV

Performance Management and Enterprise Reporting: Measures, Metrics, KPIs and Performance Management: Understanding Measures and Performance - Measurement System - Role of metrics - KPIs - Enterprise Reporting: Reporting Perspectives - Report Standardization and Presentation Practices- Enterprise Reporting Characteristics -Balanced Scorecard - Dashboards - Creating Dashboards - Scorecards vs. Dashboards - Analysis. 9 UNIT – V

BI Applications: Understanding Business Intelligence and Mobility – Business Intelligence and Cloud Computing – Business Intelligence for ERP systems - Social CRM and Business Intelligence - Case Study: GoodLife HealthCare Group, GoodFood Restaurants Inc, TenToTen Retail Stores.

TEXT BOOKS:

- Prasad R.N. and Seema Acharya, "Fundamentals of Business Analytics", 2011 Edition, Wiley-India Publication, 1. Reprint 2012.
- 2. Ramesh Sharda, Dursun Delen and Efraim Turban, "Business Intelligence: A Managerial Perspective on Analytics", 3rd Edition, Pearson Education, 2013.

REFERENCE BOOKS:

- David Loshin, "Business Intelligence: The Savvy Manager's Guide", 2nd Edition, Morgan Kaufmann Publishers, 1. 2012.
- Mike Biere, "Business Intelligence for the Enterprise", 1st Edition, IBM Press, 2003. 2.
- Larissa Terpeluk Moss, S. Atre, "Business Intelligence Roadmap: The Complete Project Lifecycle for Decision-3. support Applications", Addison-Wesley Professional, 2003.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: discuss about enterprise view of IT applications and different types of data
- CO2: express about concepts and technology in BI space
- CO3: compare OLTP with OLAP systems
- CO4: analyze data from multiple perspectives and presenting the data to information users
- CO5: apply BI to Mobile, Cloud, ERP and Social CRM systems

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3	3	3								1	1	3
CO2			3	3	3							1	1	3
CO3				3	3							1	1	3
CO4				3	3	2						1		3
CO5				3	3	3						1		3

1 – Slight, 2 – Moderate, 3 – Substantial

0 3 0

TOTAL: 45

0

Pre-requisites: Database Management System **UNIT – I**

Introduction to Storage and Management: Introduction to evolution of storage architecture, key data center elements, virtualization, and cloud computing. Key data center elements – Host (or computer), connectivity, storage, and application in both classic and virtual environments. RAID implementations, techniques and levels along with the impact of RAID on application performance. Components of intelligent storage provisioning and intelligent storage implementations.

UNIT – II

Storage Networking Technologies: Fibre channel SAN components, connectivity options, and topologies including access protection mechanism "Zoning", FC protocol stack, addressing operations, SAN-based virtualization and VSAN technology, iSCS and FCIP protocols for storage access over IP network, Converged protocol FCoE and its components, Network Attached Storage (NAS) – components, protocol and operations, File level storage virtualization, Object based storage and unified storage platform.

UNIT – III

Backup, Archive, and Replication: Business continuity terminologies, planning and solutions, clustering and multipathing architecture to avoid single points of failure, Backup and recovery – methods, targets and topologies, Data duplication and backup in virtualized environment, Fixed content and data archive, Local replication in classic virtual environments, Remote replication in classic and virtual environment services and deployment models.

UNIT – IV

Cloud Computing: Business drivers for Cloud computing, Definition of Cloud computing, Characteristics of cloud computing, Steps involved in transitioning from Classic data center to Cloud computing environment services and deployment models, Cloud infrastructure components, Cloud migration considerations.

UNIT – V

Securing and Managing Storage Infrastructure: Security threats, and countermeasures in various domains security solutions for FC-SAN, IP-SAN and NS environments, Security in virtualized and cloud environment, Monitoring and managing various information infrastructure components in classic and virtual environments, Information lifecycle management (ILM) and storage tiering, Cloud service management activities.

TEXT BOOKS:

1. EMC Education Services, "Information Storage and Management : Storing Managing, and Protecting Digital Information in Classic, Virtualized, and Cloud Environments", 2nd Edition, Wiley, 2015.

REFERENCE BOOKS:

- 1. Mark Lippitt and Erik Smith, "Networked Storage Concepts and Protocols Techbook", Version 3.0, EMC² Techbooks, 2014.(Online Version)
- 2. https://education.emc.com/ISMbookv2/default.aspx

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Understand the concept of storage management
- CO2: Evaluate storage architectures and key data center elements in classic, virtualized and cloud environments
- CO3: Explain physical and logical components of a storage infrastructure including storage subsystems, RAID and intelligent storage systems
- CO4: Describe storage networking technologies such as FC SAN, IP SAN, FCoE, NAS, and object -based and unified storage
- CO5: Articulate business continuity solutions-backup and replication and archive for managing fixed content

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2		2			3				3		2	2
CO2	2	2		2								2	2	2
CO3		2											2	2
CO4			3										2	2
CO5			2		1							2	2	2

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

3 0 0 3

9

Q

0

9

0

14ITE05 INFORMATION RETRIEVAL METHODS

Pre-requisites: Data Warehousing and Data Mining UNIT-I

Introduction and Modeling: Information Retrieval - The IR Problem - The IR System - Modeling: Classic Information Retrieval – Set Theoretic, Algebraic and Probabilistic Models – Retrieval Evaluation.

UNIT - II

Relevance Feedback and Documents: A Framework for feedback methods-Explicit feedback-Implicit feedback through local analysis-Global analysis-Documents: Metadata-Document Formats-Text Properties-Document Preprocessing-Organizing documents-Text Compression.

UNIT – III

Queries, Indexing and Searching: Query Languages-Query Properties-Indexing and Searching: Introduction-Inverted Indexes - Signature Files - Suffix Trees and Suffix Arrays-Sequential Searching - Multidimensional Indexing.

UNIT - IV

Web Retrieval and Web Crawling: Introduction-The Web-Search Engine Architectures-Ranking-User Interaction-Browsing-Web Crawling.

UNIT - V

Structure Text and Multimedia Information Retrieval: Structured Text Retrieval-Multimedia Information Retrieval-Enterprise Search-Tasks-Architecture-Evaluation.

TEXT BOOKS:

Ricardo Baeza-Yate, Berthier Ribeiro-Neto, "Modern Information Retrieval", 2nd Edition, Pearson Education Asia, 1. 2011.

REFERENCE BOOKS:

- Chowdhury G.G., "Introduction to Modern Information Retrieval", 2nd Edition, Neal-Schuman Publishers, 2003. 1.
- Daniel Jurafsky and James H. Martin, "Speech and Language Processing", 2nd Edition, Prentice Hall, 2008. 2.
- David A. Grossman and Ophir Frieder, "Information Retrieval: Algorithms, and Heuristics", 2nd Edition, Academic 3. Press, 2000.
- Charles T. Meadow, Bert R. Boyce, Donald H. Kraft, "Text Information Retrieval Systems". 3rd Edition. Emerald 4. Group Publishing Ltd., 2007.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Understand and apply the basic concepts of information retrieval
- Appreciate the principles of relevance feed back CO2:
- CO3: Apply different indexing and searching mechanisms
- CO4: Retrieve information from complex data types
- CO5: Develop search engines and evaluate them

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2		2												
CO3	3		3	2	3									3
CO4				3	1								2	
CO5		3			2									2

1 – Slight, 2 – Moderate, 3 – Substantial

0 3 0

3

9

Q

9

9

0

14ITE06 DISTRIBUTED SYSTEMS

Pre-requisites: Computer Communication Networks **UNIT – I**

Architectures: Introduction to distributed system –Goals – Types of distributed system, Architectural styles, System architecture – Architecture vs Middleware – Self Management in distributed system. Processes: Virtualization, Servers, Code migration.

UNIT – II

Communication: Types of Communication-Remote procedure call – RPC Operation- Parameter passing methods - Asynchronous RPC- DCE-RPC – Message Oriented Communication. Clock Synchronization : Inherent limitations of a distributed system – Logical clocks – Lamport's clock – Vector clocks, Casual ordering of messages.

UNIT – III

Distributed Mutual Exclusion: Non-token based algorithms: Lamport algorithm -Ricart – Agrawala Algorithms – Token Based algorithms: Suzuki-Kasami's Broadcast algorithm. Distributed deadlock detection: Deadlock handling Strategies-Issues in deadlock detection- Deadlock detection algorithms: Completely Centralized algorithm- Edge Chasing algorithm-Menasce-Muntz Algorithm.

UNIT – IV

Agreement Protocols: Classification of Agreement problems - Solution to Byzantine Agreement algorithm - Lamport-Shostak-Pease algorithm. Distributed file system: Architecture, Mechanisms for building distributed file system – Design issues – Case study: Sun NFS. Distributed Shared Memory: Architecture- Algorithms for implementing DSM- Memory coherence.

UNIT – V

Fault Tolerance: Issues–Atomic actions and committing–Commit protocols-Non blocking commit protocols – Voting and dynamic voting protocols –Majority based dynamic and dynamic vote reassignment protocols – Failure resilient processes – Reliable communication. Distributed Web-Based Systems: Architecture – Processes – Communication – Synchronization – Consistency and replication.

TEXT BOOKS:

- 1. Tanenbaum Andrew S., and Maarten Van Steen, "Distributed Systems: Principles and paradigms", 2nd Edition, Pearson Education, New Delhi, Reprint 2015.
- 2. Singhal Mukesh and Shivaratri Niranjan G., "Advanced Concepts in Operating Systems", 1st Edition, Tata McGraw-Hill Publishing Co. Ltd., New Delhi, 2011.

REFERENCE BOOKS:

- 1. Coulouris George, Dollimore Jean, Kindberg Tim and Blair Gordon "Distributed Systems: Concepts and Design", 5th Edition, Pearson Education Asia, 2016.
- 2. Liu M.L., "Distributed Computing: Principles and Applications", 1st Edition, Pearson Education, 2004.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Know the basic concepts, architecture and virtualization in distributed systems
- CO2: Understand the various communication models in distributed systems
- CO3: Implement various synchronization, mutual exclusion algorithm in distributed systems
- CO4: Understand the concepts of resource management and fault tolerance in distributed systems
- CO5: Develop distributed applications in web based systems

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		3									2	2	2
CO2	1		3									2	2	3
CO3	1		3	2								2	2	3
CO4	1		3	3								2	2	3
CO5	1		3									2	3	3

1 - Slight, 2 - Moderate, 3 - Substantial

0 0 3

3

9

9

9

9

14ECE08 DIGITAL IMAGE PROCESSING

(Common to ECE, EEE & IT branches)

UNIT-I

Digital Image Fundamentals: Elements of digital image processing systems- Elements of visual perception- Brightness-Contrast- Hue- Saturation- Mach band effect -Image sampling- Quantization - Basic relationship between pixels - Color image fundamentals - RGB- HSI models - 2D Image transforms: DFT - DCT - KLT - Haar - Walsh - Hadamard

UNIT - II

Image Enhancement: Basic intensity transformations - Piecewise linear transformation functions - Histogram equalization - Spatial filtering : Smoothing and sharpening Filters - Frequency domain filtering : Smoothing and sharpening filters - Homomorphic filters - Color image enhancement

UNIT - III

Image Restoration: Degradation model - Noise distributions- Median - Geometric mean - Harmonic mean - Contra harmonic mean filters - Order Statistics filters - Inverse and wiener filtering - Constrained least square filtering. Morphological Image Processing: Preliminaries – Erosion – Dilation – Duality – Opening – Closing – Hit or Miss Transformation

UNIT-IV

Image Segmentation, Representation & Description: Point, line and edge detection – Basics of intensity thresholding – Region based segmentation : Region growing - Region splitting and merging - Image representation : Chain codes, -Boundary descriptors - Regional descriptors

UNIT – V

Image Compression: Fundamentals: Types of redundancy – Huffmann – Run length coding – Arithmetic coding - Bitplane coding – Block Transform coding – Wavelet Coding – Lossless and Lossy Predictive coding – JPEG standard

TEXT BOOKS:

Gonzalez R.C. and Woods R.E., "Digital Image Processing", 4th Edition, Pearson Education, 2009. 1.

REFERENCE BOOKS:

- Jain A.K., "Fundamentals of Digital Image Processing", 4th Edition, PHI Learning, 1995. 1.
- Salomon David, "Data Compression: The Complete Reference", 2nd Edition, Springer, Verlag, New York, 2001. 2.
- Milan Sonka, Roger Boyle and Vaclav Hlavac, "Image Processing, Analysis, and Machine Vision", 4th Edition, 3. Cengage Learning, 2015.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Analyze the real time images using 2D transforms
- CO2: Improve the quality of images with various enhancement techniques
- CO3: Apply the concepts of color image processing
- CO4: Realize edge detection and segmentation algorithms for images
- CO5: Perform compression of images

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3		3	3								2	
CO2	2	3	3	3	3							2	3	2
CO3			3	3	3								3	
CO4		3	3	3	3								2	
CO5		3	3	3	3								2	

1 – Slight, 2 – Moderate, 3 – Substantial

3 9

9

9

0

3

0

9

Q

14CSE14 BIG DATA ANALYTICS

(Common to CSE & IT branches)

UNIT – I

Introduction: Big data Introduction - Types of Data – characteristics – evolution – definition – challenges – characteristics – Big Data Analytics – importance – data science – terminologies used in Big data environments

UNIT – II

Hadoop: Hadoop Introduction – RDBMS Vs Hadoop – distributed computing challenges – HDFS – Processing data with Hadoop – Interacting with Hadoop Ecosystem – Introduction to MapReduce Programming- mapper-reducer-combiner-partitioner-searching-sorting-compression.

UNIT – III

MongoDB and Cassandra: Introduction to MongoDB – data types in MongoDB – MongoDB Query Language – Introduction to Cassandra – Features of Cassandra – CQL Data types – CRUD operations – collections – alter – import and export – Querying System tables .

UNIT – IV

HIVE and PIG: Introduction to Hive – Architecture – Data types – file format – Hive Query Language – Introduction to Pig – Pig on Hadoop – Data types – running Pig – Execution modes of Pig – HDFS commands – Relational Operators – Eval function – Complex Data types.

UNIT - V

Apache Spark: Introduction to Data Analytics with Spark – Getting started with Spark – Introduction to Spark's Python and Scala shells – Spark RDD – Spark Core Programming – Spark Deployment.

TEXT BOOKS:

1. Seema Acharya and Subhashini Chellappan, "Big Data and Analytics", 1st Edition, Wiley, 2015.

REFERENCE BOOKS:

- 1. "Data science and Big data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", EMC Education Services, John Wiley and Sons, 2015.
- 2. Frank J. Ohlhorst, "Big Data Analytics: Turning Big Data into Big Money", Wiley and SAS Business Series, 2012.

3. Holden Kararu, Andy Konwinski, Padtrick Wendell, Matei Zaharia, "Learning Spark", O'Reilly Books, 2015.

COURSE OUTCOMES:

On completion of the course the students will be able to

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: describe the concepts and characteristics of Big Data
- CO2: recognize the usage of Hadoop
- CO3: determine the use Hadoop database system
- CO4: describe the architecture and formats of Hive and Pig
- CO5: apply spark to solve large data analysis problems

Mapping of COs with POs and PSOs

						·								
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3										2	2	
CO2		3	2	2	3							2	2	
CO3		3	2	2	3							2	2	
CO4		3	2	2	3							2		2
CO5		3	2	3	3							2		2

1-Slight, 2-Moderate, 3-Substantial

3 9

9

9

9

3

0 0

9

14CSE15 SEMANTIC WEB

(Common to CSE & IT branches)

Pre-requisites: Web Technology

UNIT – I

Introduction to Semantic Web: Introduction – Semantic Web Technologies – Layered approach – Describing Web Resources: RDF: Data Model – Syntaxes – RDFS: Adding Semantics – RDF Schema: Language – RDF and RDF Schema in RDF Schema – Axiomatic Semantics for RDF and RDF Schema – Direct Inference System for RDF and RDFS.

UNIT – II

Querying the Semantic Web: SPARQL Infrastructure – Basics: Matching Patterns – Filters – Constructs for Dealing with an Open World – Organizing Result Sets – Other Forms of SPARQL Queries – Querying Schemas – Adding Information with SPARQL Update.

UNIT – III

Web Ontology Language OWL2: Introduction – Requirements for Ontology Languages – Compatibility of OWL2 with RDF/RDFS – OWL Language – OWL2 Profiles.

UNIT – IV

Logic and Inference: Rules: Introduction – Example of Monotonic Rules: Family Relationships –Monotonic Rules: Syntax – Monotonic Rules: Semantics – OWL2RL: Description Logic meets Rules – Rule Interchange Format: RIF – Semantic Web Rules Language(SWRL) – Rules in SPARQL:SPIN – Nonmonotonic Rules: Motivation and Syntax – Example of Nonmonotonic Rules: Brokered Trade – Rule Markup Language(RuleML).

UNIT – V

Applications & Ontology Engineering: Good Relations – BBC Artists – BBC World Cup 2010 Website – Government Data – New York Times – Sigma and Sindice – OpenCalais – Schema.org. Constructing Ontologies Manually – Reusing Existing Ontologies – Semiautomatic Ontology Acquisition – Ontology Mapping – Exposing Relational Databases – Semantic Web Application Architecture.

TEXT BOOKS:

1. Grigorous Antoniou, Paul Groth, Frank van Harmelen and Rinke Hoekstra, "A Semantic Web Primer", 3rd Edition, The MIT Press, 2012.

REFERENCE BOOKS:

- 1. Dieter Fensel, James A. Hendler, Henry Lieberman and Wolfgang Wahlster, "Spinning the Semantic Web: Bringing the world wide web to its full potential", 1st Edition, The MIT Press, 2005.
- 2. Shelley Powers, "Practical RDF", 1st Edition, O'Reilly Publishers, First Indian Reprint, 2003.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: model ontologies using Resource Description Framework (RDF)
- CO2: query ontologies using SPARQL
- CO3: model and design ontologies using Web Ontology Language (OWL)
- CO4: apply semantic web technologies to real world applications
- CO5: illustrate the principles of Ontology Engineering

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	2	3		2							2	2	3
CO2		3	3		2							2	2	3
CO3		3	3		2							2	2	3
CO4		3	3	2	2	2						2	2	3
CO5		3	3	2	2	2						2	2	3

1 - Slight, 2 - Moderate, 3 - Substantial

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

0 0 3

3

9

9

9

9

9

14CSE16 SOFTWARE PROJECT MANAGEMENT (Common to CSE & IT branches)

Pre-requisites: Software Engineering UNIT – I

Introduction to Software Project Management: Introduction to Software Project Management - Importance - types of project – Activities – plans, methods and methodologies – Ways of Categorizing software projects – Stakeholders – Setting objectives – Management and management control – Traditional vs Modern project management practices. Project Evaluation: Introduction - A business case - Project Portfolio Management - Evaluation of Individual Projects -Cost Benefit Evaluation Techniques - Risk Evaluation

UNIT - II

Project Planning: Introduction to step wise project planning – Select project - Identify project scope and objectives, project infrastructure - Analyse project characteristics - identify project products and activities - estimate effort for activity – identify activity risks, Allocate Resources – Review plan – Execute plan. Software Effort Estimation : Introduction – Estimates – problems – Basis – Techiques – Bottom-up Estimating – Top down approach and parametric models - COSMIC - COCOMO II

UNIT – III

Activity Planning and Risk Management: Objectives - Project Schedule - Sequencing and Scheduling Activities -Network Planning Models - Forward Pass - Backward Pass - Activity Float - Shortening Project Duration - Activity on Arrow Networks – Risk Management – Nature of Risk – Types of Risk – Framework – Risk Identification – Risk Assessment – Risk Planning – Risk management – Applying PERT Technique – Monte Carlo Simulation

UNIT - IV

Monitoring and Control: Creating Framework – Collecting The Data – Visualizing Progress – Cost Monitoring – Earned Value - Prioritizing Monitoring - Getting Project Back To Target - Change Control - Managing Contracts - Introduction - Types of Contract - Stages In Contract Placement - Typical Terms of A Contract - Contract Management - Acceptance

UNIT – V

Managing People and Organizing Teams: Introduction - Understanding Behavior - Organizational Behaviour: A Background – Selecting The Right Person For The Job – Instruction In The Best Methods – Motivation – The Oldham – Hackman Job Characteristics Model - Stress -Health And Safety -Working In Groups - Becoming A Team -Decision Making-Organizational Structures - Case Studies. **TOTAL: 45**

TEXT BOOKS:

Bob Hughes, Mike Cotterell and Rajib Mall, "Software Project Management", 5th Edition, Tata McGraw Hill, New 1. Delhi, 2011.

REFERENCE BOOKS:

- Pankaj Jalote, "Software Project Management in Practice", 8th Impression, Pearson, 2002. 1
- Watts S. Humphrey, "PSP: A self-improvement process for software engineers", 1st Print, Addison-Wesley, 2005. 2.
- Watts S. Humphrey, "Introduction to the Team Software Process", 5th Print, Addison-Wesley, 2000. 3.
- Orit Hazzan and Yael Dubinsky, "Agile Software Engineering", Springer, 2008. James R. Persse, "Process Improvement Essentials", 1st Edition, O'Reilly, 2006. 4
- 5

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: understand and practice the process of project management
- CO2: evaluate and assess the projects
- produce an activity plan of the project and analyzing the risks involved in it CO3:
- CO4: identify the resources required for a project and to produce a work plan and resource schedule
- CO5: monitor the progress of projects and to control the risks involved
- CO6: identify the factors that influence people's behavior in a project environment and to improve group working Manning of COs with POs and PSOs

					map	ping of C	Os with	11050	inu i b	03				
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		2	2		1	2		2	2	2	3	3	2	3
CO2		2	3		1	2		2	2	2	3	3	2	3
CO3		2	3		1	2		2	2	2	3	2	2	3
CO4		2	3		1	2		2	2	2	3	2	2	3
CO5		2	3		1	2		2	2	2	2	2	2	3
CO6		2				2		2	2	3	2	2	2	3

1 – Slight, 2 – Moderate, 3 – Substantial

0 0 3

3

9

9

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

14CSE17 SOFTWARE QUALITY ASSURANCE (Common to CSE & IT branches)

Pre-requisites: Software Engineering **UNIT – I**

Software Quality in Business Context: Defining Quality – Need for Quality – Quality Control Vs Quality assurance – Quality assurance at each phase of SDLC. Managing software Quality in an Organization: QMS – Need for SQA group in an Organization. Planning for SQA : Software Quality assurance plans – Organizational level initiatives.

UNIT – II

Product Quality and Process Quality: Introduction – Software systems evolution – Product quality – Models for software product Quality – Process Quality. Software Measurement and Metrics : Introduction – Measurement during software life cycle context – Defect metrics – Metrics for software maintenance – Classification of software metrics – Requirements related metrics – Measurements and process improvement – Measurement principles

UNIT – III

Walkthroughs and Inspections: Introduction – Structured walkthroughs – Inspections – Various roles and responsibilities involved in Reviews / Inspections – Some psychological aspects of reviews. Software Configuration Management : Need for SCM – Software configuration management activities – Personnel in SCM activities

UNIT – IV

Software Quality Assurance Standardization: ISO 9000 – Origin of ISO 9000 – Work of ISO – ISO standards development process. ISO 9001 : 2000 – ISO Certification – Assessment / Audit preparation – Assessment process – ISO consulting services and consultants. Software CMM and other Process Improvement Models : The Capability Maturity Model for software – An overview – Practices followed at mature organizations – Types of CMMs Model

UNIT – V

Software Testing: Purpose of testing – Differences between inspection and testing – Testing Vs debugging – Testing life cycle – Roles and responsibilities in testing – Test artifacts – The test plan – The V- Model for testing phases – Testing techniques – Test metrics – Risk-based testing – Human issues and challenges in testing. TOTAL: 45

TEXT BOOKS:

1. Nina S. Godbole, "Software Quality Assurance Principles and Practice", Narosa Publishing House, Reprint 2011. **REFERENCE BOOKS:**

- 1. Gordon G Schulmeyer, "Handbook of Software Quality Assurance", 3rd Edition, Artech House Publishers, 2007.
- 2. Mordechai Ben-Menachem, Garry S. Marliss, "Software Quality", 2nd Edition, Vikas Publishing House Pvt. Ltd., New Delhi, 2014.
- 3. Gopalswamy Ramesh and Srinivasan Desikan, "Software Testing: Principles and Practices", 6th Impression, Pearson Education, New Delhi, 2006.
- 4. Watts S. Humphrey, "Managing the Software Process", 5th Impression, Pearson Education Inc., 2008.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: understand the concepts, metrics, and models in software quality assurance
- CO2: identify a framework for software quality assurance and discusses individual components in the framework
- CO3: identify the components of software quality assurance systems
- CO4: evaluate the methodologies for SCM and understand how to apply it in practice
- CO5: choose the software testing techniques to cater to the need of the project

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2	3				2					2	2	2	
CO2		3				2					2	2	2	2
CO3		3				2					2	2	2	
CO4				3	2							2		2
CO5					2						2	2		2

1 – Slight, 2 – Moderate, 3 – Substantial

0 0 3

3

9

9

9

UNIT - III

UNIT-I

UNIT - II

Entrepreneur:

Entrepreneur and a Manager.

Business Plan: Objectives of a Business Plan, Business Planning Process, Opportunity Identification and Selection, Contents of a Business Plan, Functional Plans.

14GEE81 ENTREPRENEURSHIP DEVELOPMENT (Common to all Engineering and Technology branches except Civil and Chemical Engg.)

Entrepreneurship Concepts: Meaning and concept of entrepreneurship, Role of Entrepreneurship in Economic

Development. Factors affecting Entrepreneurship - Creativity, Innovation and Entrepreneurship, Intrapreneurship

UNIT-IV

Entrepreneurial Eco System: Forms of Business Ownership, Sources of Finance, Institutional Support to Entrepreneurs.

UNIT - V

Small Business Management: Definition of Small Scale Industries, Strengths and Weaknesses of Small Business, Growth Strategies in Small Scale Enterprises, Sickness in Small Enterprises - Symptoms, Causes and Consequences.

TEXT BOOK:

S.S.Khanka, "Entrepreneurial Development", 4th Edition, S.Chand & Company Ltd., 2012. 1

Madhurima Lall and Shikha Sahai, "Entrepreneurship", 2nd Edition, Excel Books, New Delhi, 2008. 2

REFERENCE BOOKS:

- Raj Shankar, "Entrepreneurship, Theory and Practice", Vijay Nicole Imprints Pvt. Ltd., Chennai 2012. 1.
- Barringer and Ireland, "Entrepreneurship", 3rd Edition, Pearson Education, 2012. 2.
- Zimmer and Scarborough, "Essentials of Entrepreneurship and Small Business Management", 5th Edition, PHI 3. Learning Pvt. Ltd., 2009.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: understand the concepts of entrepreneurship and its importance
- CO2: understand the traits of an entrepreneur and the sources of his motivation
- CO3: understand the components of a business plan
- CO4: demonstrate knowledge of various sources of finance and institutions supporting entrepreneurship
- CO5: understand the nature of small business and causes of industrial sickness

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1							2	2	2	2	3	2		2
CO2							2	2	2	2	3	2		2
CO3						3	2	2	2	2	2	2	2	2
CO4											3	2	3	2
CO5							2	2	2	2	3	2		2

1 – Slight, 2 – Moderate, 3 – Substantial

9 Definition, Entrepreneurial Motivation, Characteristics of Entrepreneurs, Distinction between an

3

0

0

3

0

Q

9

14ITE07 WIRELESS COMMUNICATION AND NETWORKS

Pre-requisites: Computer Communication Networks **UNIT – I**

Cellular Network: Introduction – The Cellular Revolution – The Global Cellular Network – Broadband – Future Trends. Transmission Fundamentals: Analog and Digital Data Transmission – Channel Capacity – Transmission Media – Multiplexing - FDMA- TDMA- SDMA- CDMA

UNIT – II

Communication Networks: LANs, MANs and WANs – Switching Techniques – Circuit Switching – Packet Switching – Asynchronous Transfer Mode. Protocols and TCP/IP Suite: The TCP / IP Protocol Architecture – The OSI Model – Internetworking

UNIT – III

Wireless Communication Technology: Antennas – Propagation Modes – Line-of-sight Transmission – Fading in mobile environment – Coding and Error Control – Error Detection – Block Error Correction Codes – Convolutional Codes – Automatic Repeat Request – Flow Control and Error Control

UNIT – IV

Wireless Networking: Cellular Wireless Networks – Principles of Cellular Networks – First Generation Analog – Second Generation TDMA – Second Generation CDMA – Third Generation Systems – Cordless Systems – Wireless Local Loop – WiMAX and IEEE 802.16 Broadband Wireless Access Standards – Mobile IP – WAP

$\mathbf{UNIT} - \mathbf{V}$

Wireless LANs: Overview – Infrared LANs – Spread Spectrum LANs – Narrowband Microwave LANs –IEEE 802 Protocol Architecture - IEEE 802.11 Architecture and Services – IEEE 802.11 MAC – IEEE 802.11 Physical Layer – Other IEEE 802.11 Standards. Bluetooth and IEEE 802.15: Overview – Radio Specification – Baseband Specification – Link Manager Protocol – Logical Link Control and Adaptation Protocol – IEEE 802.15

TEXT BOOKS:

1. Cory Beard and William Stallings, "Wireless Communication Networks and Systems", 1st Edition, Pearson Education, New Delhi, 2016.

REFERENCE BOOKS:

- 1. Schiller Jochen, "Mobile Communications", 2nd Edition, Pearson Education, 2003.
- 2. Pahlavan Kaveh and Prasanth Krishnamoorthy, "Principles of Wireless Networks", 1st Edition, Pearson Education, 2003.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Comprehend the concepts of wireless networks and multiple access techniques
- CO2: Recognize the basic concepts of 2G and 2.5G networks and their applications
- CO3: Understand the concepts of 3G and IP on wireless networks
- CO4: Gain basic knowledge in Wi-Max technologies
- CO5: Acquire basic knowledge in setting up of high speed wireless LAN

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3								2				3	3
CO2	1								1					3
CO3												1		3
CO4	2								2			1	2	3
CO5									1					3

1 - Slight, 2 - Moderate, 3 - Substantial

0 0 3

3

TOTAL: 45

9

9

Q

9

14ITE08 CLOUD COMPUTING

(Common to IT & CSE branches)

Pre-requisites: Distributed System / Distributed Computing UNIT – I

Introduction: Cloud computing at a Glance - Historical Developments - Building Cloud computing Environments -Virtualization: Introduction - Characteristics - Taxonomy - Virtualization and Cloud Computing - Pros and Cons -Technology: Xen - VMware - Microsoft Hyper-V

UNIT - II

Cloud Computing Architecture and Aneka Platform: Cloud Reference Model – Types of Clouds – Economics of the Cloud- Open Challenges - Anatomy of the Aneka container - Building Aneka clouds - Cloud programming and management.

UNIT – III

Cloud Application Programming: Concurrent Computing: Parallelism for single-machine – Programming applications with threads – Multithreading with Aneka – Programming applications with Aneka threads. High-Throughput Computing: Task computing – Task-based application models – Aneka task-based programming.

UNIT - IV

Cloud Platforms and Application: Data Intensive Computing – Aneka Map Reduce Programming, Cloud Platform: Amazon Web Services - Google App Engine - Microsoft Azure. Cloud Applications: Scientific applications - Business and Consumer Applications.

UNIT – V

Advanced Topics: Energy Efficiency in Clouds - Market based Management of Cloud - Federated Clouds / Inter Cloud - Third Party Cloud services.

TEXT BOOKS:

Rajkumar Buyya, Christian Vecchiola and Thamarai Selvi S., "Mastering Cloud Computing", McGraw Hill 1. Education(India) Private Limited, 2013.

REFERENCE BOOKS:

- Rittinghouse John and Ransome James, "Cloud Computing: Implementation, Management, and Security", 1st 1. Edition, CRC Press, 2016.
- Michael Miller, "Cloud Computing: Web-Based Applications that change the way you work and collaborate 2. online", 1st Edition, QUE Publishing, 2009.
- Jeorge Reese, "Cloud Application Architectures: Building Applications and Infrastructure in the Cloud", 1st Edition, 3. O'Reilly Publications, 2009.
- Miller F.P., Vandome A.F and Mc Brewster John, "Cloud Computing", 1st Edition, Alphascript Publishing, 2009. 4.
- Toby Velte, Anthony Velte and Robert Elsenpeter, "Cloud Computing A Practical Approach", 1st Edition, Tata 5. McGraw Hill, 2010.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: understand the current trends and basics of cloud computing
- explore the online applications of cloud services CO2:
- CO3: design various applications by integrating the cloud services
- CO4: understand VMware
- CO5: explore Aneka

CO₅

				1	rapping	g of COS	s with P	Os and	P308					
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1		3		2	2	3	2					2	2	
CO2			3		3	3	2					2	2	2
CO3		2			3							2	2	
CO4		2			3							2	2	2

3

2

Manning of COs with POs and PSOs

2

3 1 – Slight, 2 – Moderate, 3 – Substantial 2

2

9

Q

Q

9

9

14ITE09 SERVICE ORIENTED ARCHITECTURE

Pre-requisites: Software Engineering

UNIT – I

Fundamentals: Software architecture – Types of IT architecture – SOA – Evolution – Key components – Perspective of SOA – Enterprise wide SOA – Architecture – Enterprise applications – Solution architecture for enterprise application – Software platforms for enterprise applications – Patterns for SOA – SOA programming models.

UNIT – II

Service Oriented Analysis and Design: Service - oriented analysis and design – Design of activity, data, client and business process services.

UNIT – III

SOA Technologies: SOA – SOAP – WSDL – JAXWS – XML WS for .NET – Service integration with ESB – Scenario – Business case for SOA – Stakeholder objectives – benefits of SOA – Cost savings.

UNIT – IV

SOA Implementation and Governance: SOA implementation and governance – Strategy – SOA development – SOA governance – Trends in SOA – Event-driven architecture – Software as a service – SOA technologies – Proof-of-concept – Process orchestration – SOA best practices.

UNIT – V

XML and Security: Meta data management – XML security – XML signature – XML encryption – SAML – XACML – XKMS – WS-Security – Security in web service framework - Advanced messaging - Transaction Processing – Paradigm – Protocols and coordination – Transaction specifications – SOA in mobile – Research issues.

TEXT BOOKS:

- 1. Shankar Kambhampaty, "Service Oriented Architecture for Enterprise and Cloud Applications", 2nd Edition, Wiley India Pvt. Ltd., Reprint Edition 2014.
- 2. Eric Newcomer and Greg Lomow, "Understanding SOA with Web Services", 1st Edition, Pearson Education, 2005.

REFERENCE BOOKS:

- 1. Thomas Erl, "Service Oriented Architecture : Concepts, Technology, and Design", 1st Edition, Prentice Hall India, 2005.
- 2. Michael P. Papazoglou, "Web Services and SOA: Principles and Technology", 2nd Edition, Pearson Education, 2011.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Understand the various architectural concepts of software
- CO2: Design different types of services
- CO3: Know different SOA technologies
- CO4: Get familiarized with implementation and governance principles of SOA
- CO5: Understand the concepts of XML and web services security

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	2											2	
CO2			3										3	
CO3	3	1	3		1				3			1	2	
CO4	2		1		3				3	1	2		2	
CO5	1	1			2							3	2	

1 – Slight, 2 – Moderate, 3 – Substantial

0 0 3

3

9 - (

Q

9

9

9

14ITE10 CYBER FORENSICS

(Common to IT & CSE branches)

Pre-requisites: Cryptography and Network Security **UNIT – I**

Computer Forensics and Investigation as a Profession: Preparing for computer investigations- Maintaining professional conduct Understanding Computer Investigations: Preparing a computer investigation-Taking a symmetric approach-Procedures for corporate High- Tech investigations Understanding data recovery workstation and software-Conducting an investigation The investigator's Office and Laboratory: Acquiring certification and training- Determining the physical requirements for a computer forensics lab-Selecting a basic forensic workstation-Building a business case for developing a forensic lab

UNIT – II

Data Acquisition: Understanding storage format for digital evidence-Determining the best acquisition method-Contingency planning for image acquisitions-Validating data acquisitions – Performing RAID data acquisitions- Using remote network acquisition tools. Processing crime and Incident Scenes: Identifying digital evidence- Processing law enforcement crime scenes- Preparing for a search- Securing a computer incident-Seizing digital evidence at the scene-Storing digital evidence- Obtaining a digital hash

UNIT – III

Current Computer Forensic Tools: Evaluating computer forensic tools: Types of computer forensic tools-Task performed by computer forensic tools-Computer forensic software tools-Computer forensic hardware tools-Validating and testing forensic software. Computer Forensics Analysis and Validation: Determining what data to collect and analyze-Validating forensic data-Addressing data hiding techniques

UNIT – IV

Recovering Graphics File: Recognizing a graphics file- understanding data compression-Understanding copyright issues with graphics. Virtual Machines, Network Forensics and Live Acquisitions: Virtual machines overview- Network forensics overview- Using network tools

UNIT – V

E-Mail Investigations: Exploring the role of email in investigations – Exploring the role of client and server in email-Investigating email crimes and violations- Understanding email servers. Cell phone and Mobile Device Forensics: Understanding mobile device forensics- Understanding Acquisition procedures for cell phones and mobile devices

TEXT BOOKS:

1. Bill Nelson, Amelia Philips and Christopher Steuart, "Guide to Computer Forensics and Investigations", 4th Edition, Cengage Learning, New Delhi, 2010.

REFERENCE BOOKS:

- 1. Jason T. Luttgens, Matthew Pepe, Kevin Mandia, "Incident Response and computer Forensics", 3rd Edition, Tata McGraw-Hill, New Delhi, 2004.
- 2. Robert M. Slade, "Software Forensics", 1st Edition, Tata McGraw-Hill, New Delhi, 2005.
- 3. Bernadette H. Schell and Clemens Martin, "Cybercrime", 1st Edition, ABC-CLIO Ltd., 2004.
- 4. NIIT(Corporation), "Understanding Forensic in IT", 1st Edition, Prentice-Hall of India Pvt. Ltd., 2005.

COURSE OUTCOMES

C

CO5

On completion of the course the students will be able to

- CO1: understand the basics of computer forensics
- CO2: acquire knowledge in digital evidence collection
- CO3: use the various free open source forensics tools
- CO4: apply forensics tools in network environment
- CO5: identify the cybercrimes in e-mail and mobile devices

					Tr e	,							
COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1
CO1	3	3					2					2	2
CO2	3	3					2					2	2
CO3	3	3			3		2					2	2
CO4	3	3			3		2					2	

Mapping of COs with POs and PSOs

2

1 – Slight, 2 – Moderate, 3 – Substantial

3

3

2

2

9

3

9

0

3

0

9 'ask

9

9

TOTAL: 45

PSO₂

Pre-requisites: Problem Solving and Programming **UNIT – I**

Foundations of HCI: The Human: I/O channels – Memory – Reasoning and problem solving; The computer: Devices – Memory – processing and networks; Interaction: Models – frameworks – Ergonomics – styles – elements – interactivity-Paradigms.

UNIT – II

Design and Software Process: Interactive Design basics – process – scenarios – navigation – screen design – Iteration and prototyping. HCI in software process – software life cycle – usability engineering – Prototyping in practice – design rationale. Design rules – principles, standards, guidelines, rules, Evaluation Techniques.

UNIT – III

Models and Theories: Cognitive models - Linguistic models - The challenge of display-based systems -Physical and device models - Cognitive architectures; Socio organizational issues and stack holders requirements - Communication and collaboration models - Face-to-face communication -Conversation -Text-based communication –Group working.

UNIT – IV

Groupware and Web: Groupware – Groupware systems – Computer-mediated communication – Meeting and decision support system – Shared applications and artifacts – Frameworks for groupware – Implementing synchronous groupware; Hypertext, multimedia and the world wide web – Understanding hypertext – Web technology and issues – Static web content – Dynamic web content.

UNIT – V

Mobile HCI: Mobile Ecosystem: Platforms, Application frameworks–Type of Mobile Applications : Widgets, Applications, Games – Mobile Information Architecture, Mobile 2.0, Mobile Design : Elements of Mobile Design, Tools.

TEXT BOOKS:

- 1. Alan Dix, Janet Finlay, Gregory Abowd and Russell Beale, "Human Computer Interaction", 3rd Edition, Pearson Education, 2004.
- 2. Brian Fling, "Mobile Design and Development", 1st Edition, O'Reilly Media Inc., 2009.

REFERENCE BOOKS:

- 1. Helen Sharp and Yvonne Rogress, "Interaction Design beyond Human Computer Interaction", 4th Edition, John Wiley, 2015.
- 2. Jonathan Lazar, Jinjuan Heidi Feng and Harry Hochheiser, "Research Method's In Human Computer Interaction", 2nd Edition, John Wiley & Sons, 2010.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Design effective dialog for HCI
- CO2: Design effective HCI for individuals and persons with disabilities
- CO3: Access the importance of user feedback
- CO4: Explain the HCI implications for designing multimedia/ ecommerce/ e-learning web sites
- CO5: Develop meaningful user interface

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3	3	2	2									3	2
CO2	3		3		2	2	1			2				3
CO3	2			3		2						2	3	
CO4	3		3		2				1			2		3
CO5	2	2	3		2				2			3		3

1-Slight, 2-Moderate, 3-Substantial

3

9 -

Q

9

9

9

14ITE12 BUILDING ENTERPRISE APPLICATIONS

(Common to IT & CSE branches)

UNIT-I

Analysis and Modeling: Introduction to enterprise applications and their types - Software engineering methodologies -Life cycle of raising an enterprise application - Introduction to skills required to build an enterprise application - Key determinants of successful enterprise applications - Measuring the success of enterprise applications. Inception of enterprise applications - Enterprise analysis, business modeling, requirements elicitation, use case modeling, prototyping, Non functional requirements, requirements validation, planning and estimation.

UNIT – II

Architecting and Designing: Concept of architecture - Views and viewpoints - Enterprise architecture - Logical architecture - Technical architecture and Design, Different technical layers, Object -Oriented Analysis and Design - Best practices - Data architecture and design - relational, XML, and other structured data representations. 9

UNIT – III

Architectural Design: Technical architecture - Infrastructure architecture and design elements - Networking, Internetworking, and Communication Protocols, IT Hardware and Software, Middleware, Policies for Infrastructure Management, Deployment Strategy, Documentation of application architecture and design. Q

UNIT - IV

Construction: Construction readiness of enterprise applications - defining a construction plan, defining a package structure, setting up a configuration management plan, setting up a development environment, introduction to the concept of Software Construction Maps, construction of technical solutions layers, methodologies of code review, static code analysis, build and testing. Dynamic code analysis - code profiling and code coverage. UNIT – V 9

Testing and Rolling out Enterprise Applications: Testing an enterprise application - Testing levels and approaches -Testing environments, integration testing, performance testing, penetration testing, usability testing, globalization testing and interface testing, user acceptance testing, rolling out an enterprise application.

TEXT BOOKS:

- Anubhav Pradhan, Satheesha B. Nanjappa, Senthil K. Nallasamy, Veerakumar Esakimuthu, "Raising Enterprise 1. Applications", 1st Edition, Wiley India Pvt. Ltd., 2010.
- Brett McLaughlin, "Building Java Enterprise Applications", 1st Edition, O"Reilly Media Publications, 2002. 2

REFERENCE BOOKS:

- Soren Lauesen, "Software Requirements: Styles & Techniques", 1st Edition, Addison-Wesley Professional 1. Publications, 2002.
- 2. Brian Berenbach, Daniel J. Paulish, Juergen Kazmeier, Arnold Rudorfer, "Software Systems Requirements Engineering: In Practice", 1st Edition, McGraw - Hill/Osborne Media Publications, 2009.
- 3. Srinivasan Desikan, Gopalaswamy Ramesh, "Software Testing Principles and Practices", 1st Edition, Pearson Publications, 2006.

COURSE OUTCOMES

On completion of the course the students will be able to

- apply the concepts of Enterprise Analysis and Business Modeling CO1:
- design and document the application architecture CO2:
- CO3: understand the importance of application framework and designing other application components
- CO4: perform Code review, Code analysis and Build process
- understand different testing involved with enterprise application and the process of rolling out an enterprise CO5: application

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	1	3	3			1	1	1	1		2	2	2	2
CO2		3	3		2							2		3
CO3		3	3		2				1			2		3
CO4				3	2				2		2	2		3
CO5		3	3	2	2				2		2	2		3

Mapping of COs with POs and PSOs

1 – Slight, 2 – Moderate, 3 – Substantial

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

0 3 9

9

3

0

14ITO01 INTERNET OF THINGS

UNIT – I

Introduction to Internet of Things: Definition and Characteristics of IoT, Physical Design of IoT – IoT Protocols, IoT Communication Models - IoT Communication APIs – IoT enabled Technologies – Wireless Sensor Networks - Cloud Computing – Big data analytics – Communication Protocols, Embedded Systems – IoT Levels and Templates.

UNIT – II

IoT Design Methodology: M2M – Difference between M2M & IoT – Software defined networks – Network function Virtualization – IoT Platform design Methodologies – Domain Specific IoT – Home Automation – Smart Agriculture.

UNIT – III

Python for IoT: Language features of Python, Data types, data structures, Control of flow, functions, modules, packaging, file handling, date/time operations, classes, exception handling. Python packages – HTTPLib, URLLib, SMTPLib

UNIT – IV

IoT Physical Devices and Endpoints: Introduction to Raspberry PI – Interfaces (serial, SPI, 12C) Programming – Python program with Raspberry PI with focus of interfacing external gadgets – controlling output – reading input from pins – connecting IoT to Cloud – Xively.

UNIT – V

IoT USE CASES: Asset Management – The Smart Grid – Commercial Building Automation – Smart Cities.

TEXT BOOKS:

- 1. Arshdeep Bahga and Vijay Madisetti, "Internet of Things A Hands-on Approach", Univertsities Press, 2015.
- 2. Jan Holler, Vlasios Tsiatsis, Catherine Mulligan, Statmatis Karnouskos, Stefan Avesand and David Boyle, "From Machine-to-Machine to the Internet of Things Introduction to a New Age of Intelligence", 1st Edition, Academic Press, 2014.

REFERENCE BOOKS:

- 1. Honbo Zhou, "The Internet of Things in the Cloud: A Middleware Perspective", 1st Edition, CRC Press, 2012.
- 2. www.Raspberrypi.org
- 3. www.Xively. Com
- 4. https://www.tutorialspoint.com/python

COURSE OUTCOMES:

On completion of the course the students will be able to

- identify architecture, infrastructure and constraints of Internet of Things
- summarize the fundamental concepts of Internet-connected product
- design and program simple Internet of Things applications
- develop Internet of Things product using Raspberry Pi
- analyze the challenges and identify the opportunity in different domains for Internet of Things

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2		3										3	3
CO2	2		3		3	1			3				3	3
CO3	2		3										3	3
CO4	2		3		3				3		2		3	3
CO5	2		3										3	3

1 – Slight, 2 – Moderate, 3 – Substantial

3 0 0 3

9

9

Q

9

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

providers - Data readers - Data access library - Role of Dataset - Data Adapter - Data set object and data relationship -LINQ to dataset - Case Study : Develop a windows application for student mark analysis.

Pre-requisites: C and C++

applications - Role of .NET framework 4.5 SDK

Structures, Exception Handling – Events – Operator overloading.

UNIT-I

UNIT – II

UNIT – III

UNIT - IV

UNIT – V

Web Application: Introduction to WCF, WF Activities and behind WPF. ASP.NET: Client side scripting - Building a ASP.NET Web Page - ASP.NET Web Sites vs ASP.NET Web Applications- Web controls - Validation - Introduction to State management Case Study: Developing a web based student information system.

LINQ: Constructs - Role - Query for objects and operators. Windows Applications and ADO.NET: ADO.NET - Data

TEXT BOOKS:

Andrew Troelsen, "Pro C# 5.0 and the .NET 4.5 Framework", 6th Edition, Apress (Exclusive with DreamTech), 1. 2012.

REFERENCE BOOKS:

- Christian Nagel, Jay Glynn and Morgan Skinner, "Professional C# 5.0 and .NET 4.5", 1st Edition, John Wiley and 1. Sons Inc., 2014.
- 2. Kogent Learning Solutions Inc., "C# 2010 Programming: Covers .Net 4.0, Black Book", Dreamtech Press, 2010.
- Ian Griffiths, "Programming C# 4.0 : Building Windows, Web and RIA Applications for the .NET 4.0 Framework", 3. 6th Edition, O'Reilly, 2010.
- 4. www.w3schools.com

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Understand the concept of .NET Framework 4.5 Platform
- Build stand-alone applications using Visual Studio 2012 CO2:
- Grasp the basic knowledge of core C# CO3:
- Develop windows based applications using C#, ADO.NET with SQL Server CO4:
- CO5: Develop web-based application using C#, ASP.NET, ADO.NET

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3		1		1									2
CO2	2		2		3				2		2		2	2
CO3	3		2		1							2	2	2
CO4	3		3		3				3		3	2	3	3
CO5	3		3		3				3		3	2	3	3

1 – Slight, 2 – Moderate, 3 – Substantial

14ITO02 PLATFORM TECHNOLOGIES

.NET Platform: .NET platform - Benefits - Building blocks of .NET platform - .NET Aware Programming Language-.NET Assemblies - Common Type System- CLS - CLR - .NET Name Spaces - Introduction to building window8

Keywords - String data - Datatype - Implicitly Typed Local variables - iteration Constructs - Arrays.

0 0 3

3

9 C# and .NET: Building .NET applications using Notepad and Visual Studio – Simple C# Programming - Data Types –

9 Core C# Programming: Enum, Structure, Value and Reference types – Encapsulation - Inheritance and Polymorphism –

9

TOTAL: 45

14ITO07 MACHINE LEARNING TECHNIQUES

UNIT – I

Introduction: Designing a learning System - Machine Learning Applications - Types of Machine learning - Basic terminologies and notations – Building machine learning systems – Perspectives and Issues in Machine learning.

UNIT - II

Supervised Learning: Building good training sets – Data Preprocessing - Decision tree learning – Hypothesis space search - Inductive Bias. Bayesian Decision Theory: Introduction - Classification - Losses and Risks - Discriminant functions - Utility theory - Association rules.

UNIT – III

Artificial Neural Networks: Introduction - Representations - Problems - Perceptrons - Multilayer networks and Back Propagation Algorithm. Supervised Data Compression (LDA) – Unsupervised Dimensionality reduction (PCA).

UNIT - IV

Unsupervised Learning: K-Means clustering – Expectation-Maximization Algorithm - Hierarchical clustering. Nonparametric density Estimation- Nonparametric Regression: Smoothing models.

UNIT – V

Reinforcement Learning: Single state case - Elements - Model based learning - Temporal difference learning -Generalization - Markov Decision Processes. Case study- Machine learning for Sentiment Analysis.

TEXT BOOKS:

- Tom M. Mitchell, "Machine Learning", Indian Edition, McGraw-Hill Education (India), 2013. 1.
- Ethem Alpaydin, "Introduction to Machine Learning", 3rd Edition, Prentice Hall of India, 2015. Sebastian Raschka, "Python Machine Learning", 2nd Edition, Packt Publishing, 2015. 2.
- 3.

REFERENCE BOOKS:

- Stephen Marsland, "Machine Learning An Algorithmic Perspective", 2nd Edition, CRC Press, 2015. 1.
- Christopher M.Bishop, "Pattern Recognition and Machine Learning", 1st Edition, Springer, 2006. 2.
- Kevin P. Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012. 3.

Course Outcomes:

On completion of the course the students will be able to

- understand the basic concepts of Machine Learning techniques
- utilize supervised learning methods to solve real world problems
- apply artificial neural networks to perform classification
- design solutions for the given problem using unsupervised learning and regression
- develop applications using reinforcement learning

3 9

9

9

0

3

0

9

Q

14IT003 PYTHON PROGRAMMING

Pre-requisites: Basic Programming

UNIT – I

Introduction: Introduction to Python – Advantages of Python programming – Variables – I/O methods - Data types - Strings - List - Tuples - Dictionaries – Sets Operators - Flow Control - Loops

UNIT – II

Functions and Exception: Functions: Declaration – Types of arguments - Anonymous functions: lambda - Generators - Decorators - Exception Handling - Regular Expression - Calendars and Clocks

UNIT – III

Modules and Class: Introduction - Modules and the import Statement - Packages - Objects and Classes: Class with class - Override a Method - Get and Set Attribute Values - Name Mangling - Method Types - Duck Typing - Relationships

UNIT – IV

Files and Data Bases: File I/O operations – Directory Operations – Reading and Writing in Structured Files: CSV and JSON - Data manipulation using Oracle, MySQL and SQLite

UNIT – V

GUI and Web: UI design: Tkinter - Events - Socket Programming - Sending email - CGI: Introduction to CGI Programming, GET and POST Methods, File Upload

TEXT BOOKS:

1. Bill Lubanovic, "Introducing Python Modern Computing in Simple Packages", 1st Edition O'Reilly Media, 2014. **REFERENCE BOOKS:**

- 1. Mark Lutz, "Learning Python", 5th Edition, O'Reilly Media, 2013.
- 2. David Beazley and Brian K. Jones, "Python Cookbook", 3rd Edition, O'Reilly Media, 2013.
- 3. Mark Lutz, "Python Pocket Reference", 5th Edition, O'Reilly Media, 2014.
- 4. www.python.org
- 5. www.diveintopython3.net

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Illustrate basic concepts of python programming
- CO2: Understand the concepts of functions and exceptions
- CO3: Develop programs using modules and class
- CO4: Store and retrieve data using file and databases
- CO5: Acquire knowledge in Web and GUI design

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	1
CO2	3	2	2	2									1	
CO3		2	3		2								3	3
CO4					3									3
CO5													2	3

1 – Slight, 2 – Moderate, 3 – Substantial

0 0 3

3

9

9

9

9

9

14ITO04 MOBILE APPLICATION DEVELOPMENT

Pre-requisites: Java Programming **UNIT – I**

Introduction: Introduction to Android – History - Android Platform Architecture - Android SDK - Configuring Development Environment - Android Emulator - Application Components – Creating Android Application - Application Directory Hierarchy - Manifest File – Toast - DDMS

UNIT – II

Activity and UI: Activities - Lifecycle of an Android Activity - Intents – Layouts – Grid View – Scroll View - User Interface: Text View - Edit Text, Button, Checkbox, Radio button, Radio group, Spinner, Date and Time picker, Progress Bar, Rating Bar – List view – Array Adapter - Event Handlings.

UNIT – III

Resources and Services: Resources: Images, Color, Values, Strings, Menu - Basic Animations - Fragments - Services: Bounded and Unbounded Services - Media player - Broadcast Receivers – Alert Dialog – Notifications – Phone Calls - Sending SMS.

UNIT – IV

Database and Network: SQLite: Database Creating, Updating, and Deleting Records - Introduction to Network APIs-Location based service - Async Tasks - HttpURLConnection – JSON Parsing – Case Study: Application to Access MySQL using PHP.

UNIT – V

Hybrid Application Development: Introduction to PhoneGap and Apache Cordova - Environment Setup- Creating first App using Simple HTML - Plugin APIs: Events – File - File Transfer- Network Information – Contacts – Battery.

TEXT BOOKS:

- 1. Joseph Annuzzi Jr., Lauren Darcey and Shane Conder, "Android Wireless Application Development: Android Essentials", 5th Edition, Pearson Education, 2015.
- 2. John M. Wargo, "Apache Cordova API Cookbook", 1st Edition, Addison-Wesley Professional, 2014.

REFERENCE BOOKS:

- 1. Reto Meier, "Professional Android 4 Application Development", 1st Edition, Wiley India Pvt. Ltd., 2012.
- 2. http://developer.android.com
- 3. https://cordova.apache.org
- 4. http://phonegap.com

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Set up environment and create application
- CO2: Design an UI based application
- CO3: Acquire knowledge in resources and services
- CO4: Access database
- CO5: Develop a hybrid application for android

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1			1		2								1	3
CO2			2		2					2		2	2	3
CO3			2		2									3
CO4			3		2					2		2	2	3
CO5			2		3					3		2	3	2

1 - Slight, 2 - Moderate, 3 - Substantial

3

9

9

3

9

9

Q

– ваttery. TOTAL:45

based search- EA based machine learning - EA based automated programming - EA based adaptation.

UNIT – III Genetic Algorithms: Introduction -Biological Background - Working Principle - Encoding- Fitness function -Reproduction - Crossover - Mutation operators - Bitwise operators - Convergence- Applications.

UNIT - IV

UNIT-I

UNIT – II

Pre-requisites: Engineering Mathematics

Optimization - Dynamic Optimization Problems.

Ant Colony Optimization: Introduction - Ant Colony Optimization - Meta-heuristic - General Frameworks for Ant Colony Optimization Algorithms - Ant Colony Optimization Algorithms- Convergence - Applications.

UNIT – V

Particle Swarm Optimization: Introduction - Basic Particle Swarm Optimization (PSO) - Particle Trajectories - Single Solution Particle Swarm Optimization - Constrained Optimization- Niching with PSO – Applications.

TEXT BOOKS:

- Engelbrecht A.P, "Fundamentals of Computational Swarm Intelligence", 2nd Edition, Wiley, 2005. 1.
- Rajasekaran S. and Vijayalakshmi G.A. Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithms", 1st Edition, 2. Prentice Hall of India, New Delhi, 2003 (Reprint 2011).
- Kenneth A. DeJong, "Evolutionary Computation A Unified Approach", 2nd Edition, Prentice Hall of India, New 3. Delhi, 2006.

REFERENCE BOOKS:

- Padhy N.P., "Artificial Intelligence and Intelligent Systems", 3rd Edition, Oxford University Press, 2005, Reprint 1. 2011
- Marco Dorigo and Thomas Stutzle, "Ant Colony optimization", 1st Edition, The MIT Press, 2004. 2.
- 3. David E. Goldberg, "Genetic Algorithms in Search, Optimization and Machine Learning", 1st Edition, Addison Wesley, 1989, Reprint 2013.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Know the basics of Evolutionary algorithms
- Solve problems using evolutionary algorithms CO2:
- Apply genetic algorithms in different domains CO3:
- CO4: Implement ant colony optimization algorithm for real world applications
- Apply particle swarm optimization algorithms for different applications CO5:

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	3												3	
CO2			3	2									2	
CO3			3	3										2
CO4				2	3									2
CO5					3									2

1 – Slight, 2 – Moderate, 3 – Substantial

14IT005 EVOLUTIONARY ALGORITHMS

Introduction: Introduction to Evolutionary computation — Evolutionary Computation Paradigms - Coevolution-Optimization Problems and Methods - Unconstrained Optimization - Constrained Optimization - Multi-objective

0 3

3

0

9 Evolutionary Algorithms as Problem Solvers: Simples EAs as parallel adaptive search – EA based optimization –EA

9

9

0

TOTAL: 45

106/106

KEC-B.Tech-IT- I Sem to VIII Sem. Curriculum & Syllabus-R2014

14ITO06 FREE OPEN SOURCE SOFTWARE

UNIT-I

Introduction: Introduction to Linux - Linux Installation - Partitioning hard drives - Using the GRUB boot loader -Getting and Managing Software: Install/Uninstall RPM Packages - Shell: shell variables, Creating Shell Environment -Managing Running Processes.

UNIT – II

System Administration: Graphical administration tools- root user account - Exploring Administrative Commands, Configuration Files, and Log Files - Checking and Configuring Hardware- Creating and Managing User accounts and Group - Mounting File systems.

UNIT – III

Networking and Web Services: Configuring Networking for Desktop and Servers - Apache web server: Installation, Configuration, Virtual hosts, Publish web content, Securing web traffic with SSL/TLS.

UNIT - IV

Database, File Sharing Services and Firewall: Installing and Configuring: MySQL Server - FTP Server and Client -NFS File Server -Working with Firewalls.

UNIT - V

Linux for Cloud Computing: Overview - Basic Cloud Technology - Configuring: hypervisors - storage - virtual machines - Managing virtual machines - Migrating virtual machines.

TEXT BOOKS:

Christopher Negus, "Linux Bible", 9th Edition, Wiley India Pvt. Ltd., 2015. 1.

REFERENCE BOOKS:

- Richard Peterson, "Linux-The Complete Reference", 6th Edition, Tata McGraw-Hill, 2007. 1.
- Mark G. Sobell, "A Practical Guide to Fedora and Red Hat Enterprise Linux", 6th Edition, Pearson India, 2012. 2.

COURSE OUTCOMES

On completion of the course the students will be able to

- CO1: Apply the basics of Linux
- CO2: Understand the Linux system administration
- CO3: Configure network and web services
- CO4: Design the database, proxy and file sharing services
- CO5: Perform the basic cloud operation using Linux

Mapping of COs with POs and PSOs

COs/POs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2
CO1	2			1					2				2	3
CO2	2													3
CO3			3	2					2					2
CO4			3								2		2	
CO5					2						2			3

1 – Slight, 2 – Moderate, 3 – Substantial

0 0 3 9

3

9

9

9

9